• Title/Summary/Keyword: Frequency (Hz)

Search Result 5,141, Processing Time 0.05 seconds

An Effect of Sampling Rate to the Time and Frequency Domain Analysis of Pulse Rate Variability (샘플링율이 맥박변이도 시간 및 주파수 영역 분석에 미치는 영향)

  • Yang, Yoon La;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1247-1251
    • /
    • 2016
  • This study aims to investigate the effect of sampling frequency to the time domain and frequency domain analysis of pulse rate variability (PRV). Typical time domain variables - AVNN, SDNN, SDSD, RMSSD, NN50 count and pNN50 - and frequency domain variables - VLF, LF, HF, LF/HF, Total Power, nLF and nHF - were derived from 7 down-sampled (250 Hz, 100 Hz, 50 Hz, 25 Hz, 20 Hz, 15 Hz, 10 Hz) PRVs and compared with the result of heart rate variability of 10 kHz-sampled electrocardiogram. Result showed that every variable of time domain analysis of PRV was significant at 25 Hz or higher sampling frequency. Also, in frequency domain analysis, every variable of PRV was significant at 15 Hz or higher sampling frequency.

A Study on the Characteristics of the Underwater Ambient Noise and Biological Noise in Fish Farm Cages (가두리 양식장 주변의 수중환경소음과 생물소음의 특성에 관한 연구)

  • 박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • This paper describes to analyze the underwater ambient noise and biological noise of cultivating fishes in the fish farm cages at the seawater Tongyong-kun, KyongNam and lake of Chungju, Chech'on, ChungBuk from 10 to 19 Oct. 1997, in order to find out the characteristics of these noises. The results obtained were as follows; (1) The ambient noise around the fish farm cages at lake of Chungju was 10~200Hz frequency range, 70~105dB spectrum level. The central frequency was 50~70Hz, changing of ambient noise was getting bigger than 10~200Hz in 200Hz~2kKz frequency by wind, water current. (2) The frequency of noise source around the fish farm cage at the seawater of Tongyong-kun was 20~200Hz, spectrum level was 80~100dB while feed factory was working around the fish farm cage. When feed factory did not work, noise source was 10~600Hz frequency range, 70~90dB spectrum level. It was 10dB less than that of while feed factory was working, and then the central frequency was 70Hz. (3) The vessel noise of excursion ship had changed largely at 100dB spectrum level in 10~500Hz frequency band, and the fishing boat had 20Hz~2kHz frequency range. (4) The biological noise in the fish farm cage at lake of Chungju, which was feeding of Cyprinus carpio, 2was 10~30Hz frequency, 70~104dB spectrum level. The central frequency was 75Hz. The biological noises in the fish farm cage at the seawater of Tongyong-kun, which were feeding and swimming noise, had very different spectrum pattern by species, and the frequency band was 10~800Hz.

  • PDF

Wireless Data Transmission Algorithm Using Cyclic Redundancy Check and High Frequency of Audible Range (가청 주파수 영역의 고주파와 순환 중복 검사를 이용한 무선 데이터 전송 알고리즘)

  • Chung, Myoungbeom
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.321-326
    • /
    • 2015
  • In this paper, we proposed an algorithm which could transmit reliable data between smart devices by using inaudible high frequency of audible frequency range and cyclic redundancy check method. The proposed method uses 18 kHz~22 kHz as high frequency which inner speaker of smart device can make a sound in audible frequency range (20 Hz~22 kHz). To increase transmission quantity of data, we send mixed various frequencies at high frequency range 1 (18.0 kHz~21.2 kHz). At the same time, to increase accuracy of transmission data, we send some mixed frequencies at high frequency range 2 (21.2 kHz~22.0 kHz) as checksum. We did experiments about data transmission between smart devices by using the proposed method to confirm data transmission speed and accuracy of the proposed method. From the experiments, we showed that the proposed method could transmit 32 bits data in 235 ms, the transmission success rate was 99.47%, and error detection by using cyclic redundancy check was 0.53%. Therefore, the proposed method will be a useful for wireless transmission technology between smart devices.

Frequency Characteristics of Shallow Seismic Reflection Data - Dogye, Samchuck, Kangwon (천부 탄성파 반사법 자료의 주파수 특성 - 강원도 삼척시 도계지역)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • Seismic reflection data was obtained by using 28 and 100 Hz geophones at the ground subsidence sites in an old coal mine area. Frequency spectrum of the geophone analyzed with offset revealed that 1) In the near offset ($1\~10m$), the signals in the 100 Hz geophone data contains higher frequency components (up to 300 Hz) than that of the 28 Hz (<200 Hz), 2) In the intermediate offset ($11\~39m$), although the 28 Hz geophone data showed very similar frequency characteristics as the near offset data, the 100Hz geophone data seemed to be contaminated by noise at high frequency zone (>200 Hz). In the far offset ($\geq40\;m$), the signals in both the 28 and 100 Hz geophone data are attenuated to noise level at high frequency Bone more than 150 Hz.

  • PDF

Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System (60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰)

  • 유권종;정영석;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.563-569
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency DC-DC converter, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter, and an AC filter. The 20kHz switched high frequency converter is used to generate bipolar PWM pulse, and the high frequency transformer transforms its voltage twice, which is subsequently rectified by diode bridge rectifiers for a full-wave rectified 60 Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than other power conditioning systems due to elimination of 60Hz transformer.

Prediction of Defibrillation Success of Ventricular Fibrillation ECG Signals using Time-Frequency Analysis (시-주파수 분석을 이용한 심실세동시 심전도 분석을 통한 제세동 예측에 관한 연구)

  • Sung, Hong-Mo;Shin, Jae-Woo;Lee, Hyun-Sook;Hwang, Sung-Ho;Yoon, Young-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.181-188
    • /
    • 2006
  • The purpose of this study is to predict the defibrillation success of a ventricular Fibrillation ECG signal using time-frequency analysis. During CPR, coronary perfusion pressure and electrocardiogram were measured. Parameters extracted from time-frequency domain were served as predictor of resuscitation success. Time frequency distribution(TFD) of ECG signals was estimated from the smoothed pseudo Wigner-Ville distribution(SPWVD). Median frequency, peak frequency, 1/f slope, frequency band ratios$(2{\sim}4Hz,\;4{\sim}6Hz,\;6{\sim}8Hz,\;8{\sim}10Hz,\;10{\sim}12Hz,\;12{\sim}15Hz)$ were extracted from each TFD as function of time. Paired t-test was used to determine the differences in ROSC and non-ROSC groups. In the statistical results, we selected four significant parameters - median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. We made an attempt to predict defibrillation success by combining features extracted from time frequency distribution. Independent t-test was used to determine the differences ROSC and non-ROSC groups. Consequently, we selected four significant parameters-median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. The relationship between coronary perfusion pressure and ECG parameters was analyzed with linear regression analysis. R-square value was 55%. 1/f slope and $8{\sim}10Hz$ band ratio had the significant relationship with coronary perfusion pressure.

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz) (상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

A Study on Sequential-Frequency Sonication for Improving Anaerobic Digestion (혐기성 소화 효율 향상을 위한 초음파 주파수의 순차적 적용에 대한 연구)

  • Whang, Gye-Dae;Park, Sung-Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.893-906
    • /
    • 2011
  • The effect of ultrasound pretreatment on sludge degragability was investigated at different condotions: ultrasonic frequency(28, 40, 50kHz), intensity(10, 25, 50W), sonication time(10, 20, 30, 60min). Total suspended solid(TSS) and soluble chemical oxygen demand(SCOD) concentration were measured for the evaluation of pretreatment efficiency. The pretreated sludge was used as the feedstock for anaerobic digestion process. Biogas production and volatile suspended solid(VSS) removal were determined for evaluating the process performance. 1. TSS concentration of the sludge decreased at a constant rate as sonication operation was applied. The degradation rate of TSS increased when ultrasound frequency was decreased from 50kHz to 28kHz and intensity was increased from 10W to 50W. Efficiency of TSS degradation per input energy increased as ultrasonic frequency and intensity were decreased. At the frequency of 28 and 40kHz, SCOD concentration rapidly increased during the initial 30min of sonication time, and then it gradually increased. At 50kHz, SCOD concentration constantly increased for 60min of the sonication time. The SCOD production rate increased with increasing intensity under all ultrasound frequencies. 2. The optimum condition of ultrasound treatment was 28kHz, 50W and 60min for maximizing the biogas production, methane fraction, VSS removal. The highest values in biogas production, methane fraction in biogas, VSS removal were 370ml, 70%, 2.45g, respectively. Methane production rate per input energy increased at ultrasonic frequency and intensity decreased. 3. When raw sludge was pretreated at the condition of ultrasonic frequency of 28 and 40kHz in series, sequential-frequency sonication, intensity of 50W and 60min, biogas production, methane fraction, VSS removal were about the same that of 28kHz single-frequency sonication. When sequential-frequency sonication of 28 and 50kHz was applied in series, biogas production, methane fraction, VSS removal were 356 ~ 423ml, 69 ~ 71%, 2.41 ~ 2.78g, respectively. The pretreatment efficiency of 28-50kHz sequential-frequency sonication which sonication time of 28kHz and 50kHz was 40min and 20min was higher than that of 28kHz single-frequency sonication.

A Study on Pitch Perception of Normal Korean (한국 성인 음성의 음도인식에 관한 연구)

  • Jeong, Ok-Ran;Kim, Hyung-Soon;Kim, Young-Tae;Sub, Jang-Su
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.315-323
    • /
    • 1997
  • This study attempts to determine the fundamental frequency level of male and female voices that Koreans perceive as normal. Seventy-three college students majoring in Speech Pathology participated in the study on a voluntary basis. The subjects listened to a male voice with fundamental frequency of 60 Hz, 80 Hz, 100 Hz, 120 Hz, 140 Hz, 160 Hz, 180 Hz, and 200 Hz, and a female voice with fundamental frequency of 140 Hz, 160 Hz, 180 Hz, 200 Hz, 220 Hz, 240 Hz, 260 Hz, and 280 Hz. The PSOLA (Pitch Synchronous Overlap). method and harmonic modeling method of speech signal were used to change pitch in the 20 Hz interval. The voices were presented in a random order to prevent listener bias. The results were as follows; Firstly, $46.6\%$ judged male voice with 120 Hz as normal, and $19.2\%$ judged 140 Hz as normal, and another $19.2\%$ judged 160 Hz as normal. Secondly, $50.7\%$ perceived female voice with 220 Hz as normal, and $32.9\%\;and\;30.1\%$ responded to 200 Hz and 240 Hz, respectively. The problems and recommendations for a future investigation are discussed.

  • PDF