• Title/Summary/Keyword: Freezing-thawing condition

Search Result 107, Processing Time 0.023 seconds

The Service Life Prediction of Concrete with Crushed Sand in Condition of Freezing and Thawing (동결융해작용을 받는 부순모래 콘크리트의 수명예측)

  • Kang, Su-Tae;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa;Koh, Kyung-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this study, we predicted the service life against the freezing and thawing. as a result, we found that in the case of using the low quality crushed sand with high water-cement ratio, there is the possibility of deterioration. but in any other case, we concluded that there is no chance to deteriorate if we have the required air contents by using AE agent. we are going to improve the method to evaluate more exactly the durability of the concrete with crushed sand by acquiring data from the specimen which are exposed to field for long time.

  • PDF

Study on the Freezing Conditions for the Frozen-Dough Preparation of Bread (냉동생지 제조를 위한 냉동조건 탐색)

  • Hahn Young-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.5
    • /
    • pp.443-448
    • /
    • 2004
  • In order to investigate the optimal factors for frozen dough production, the freezing and thawing condition such as temperature and time, storage period and the effect of ingredient addition were determined. A pre-fermentation of dough at 30℃ for 120 minutes was appeared to be the best for the production of frozen dough. The dough was frozen at -18℃ and then stored for 7 days. The quality of frozen dough was found to be optimal when thawed at 30℃ for 80 minutes. As ingredient of frozen dough, an addition of 3% of yeast and 4% of butter was good as well as the addition of skim milk and sugar in terms of fermentation capacity after thawing.

  • PDF

Studies on the survival Rate after Slow and Ultrarapid Frozen-Thawing of Porcine Embryos (돼지 수정란의 완만 및 초급속 동결 융해후의 생존성에 관한 연구)

  • 이봉구;김상근;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • This Study was carried out ot investigate the effects of concentration and equilibration time of cryoprotective aagents on survival rate of slowly and ultrarapidly frozen porcine embryos. The porcine embryos following dehydration by cryoprotective agents and 0.25M sucrose were slowly freezed(from 2$0^{\circ}C$ to -7$^{\circ}C$/-1$^{\circ}C$/min., from -7$^{\circ}C$ to -35$^{\circ}C$/-0.2$^{\circ}C$/min., from -35$^{\circ}C$ to -38$^{\circ}C$/-0.3$^{\circ}C$/min.) by Cell Freezer and directly plunged into liquid nitrogen and thawed in 38$^{\circ}C$ water bath. Survival rate was defined as development rate to the morula and blastocyst stage after in vitro culture or by FDA test. The results are summarized as follows : 1. The survival rates of porcine embryos after slow frozen-thawing in the freezing medium of 0.25M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 80.6, 84.7, 75.0 or 78.8%, respectively. 2. The survival rates of porcine embryos after slow frozen-thawing in the freezing medium of 0.50M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 80.9, 82.4, 73.1 or 77.1%, respectively. 3. The survival rates of porcine embryos after ultrarapid frozen-thawing in the freezing medium of 0.25M sucroese added 2.0M glycerol, 3.0M DMSO, 2.0M propanediol or 2.0M glycerol+2.0M propanediol was 65.3, 68.6, 63.2 or 59.9%, respectively. 4. The survival rates of porcine embryos after ultrapid frozen-thawing in the freezing medium of 0.50M sucrose added 2.0M glycerol, 3.0M DMSO, 2.0 propanediol or 2.0M glycerol+2.0M propanediol was 67.5, 62.9, 56.9, or 62.8%, respectively. 5. The higher survival rate of porcine embryos was attained at the short period ofequilibration time(5min.) in the freezing medium added 0.25M sucrose and 3.0 DMSO compared to those of 10 or 20min. equilibration time in the same condition.

  • PDF

Effects of Deep Freezing Temperature for Long-term Storage on Quality Characteristics and Freshness of Lamb Meat

  • Choi, Mi-Jung;Abduzukhurov, Tolibovich;Park, Dong Hyeon;Kim, Eun Jeong;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.959-969
    • /
    • 2018
  • This study investigated the effects of deep freezing and storage temperature ($-50^{\circ}C$, $-60^{\circ}C$, and $-80^{\circ}C$) on the quality and freshness of lamb. To compare the qualities of deep frozen and stored lamb, fresh control and normal freezing conditions ($-18^{\circ}C$) were adopted. As quality and freshness parameters, drip loss (thawing loss and cooking loss), water-holding capacity (WHC), texture profile analysis (TPA), thiobarbituric acid reactive substances (TBARS), and total volatile basic nitrogen (TVBN) were evaluated during 5 months of storage. Temperature influenced the drip loss and WHC, and deep freezing minimized the moisture loss during frozen storage compared to the normal freezing condition. Lamb frozen and stored at deep freezing temperature showed better tenderness than that stored in normal freezing conditions. In particular, lamb frozen at lower than $-60^{\circ}C$ exhibited fresh lamb-like tenderness. Regardless of temperature, evidence of lipid oxidation was not found in any frozen lamb after 5 months, while TVBN was dependent on the applied temperature. Therefore, this study demonstrated that deep freezing could potentially be used to maintain freshness of lamb for 5 months. From the quality and economic aspects, the freezing and storage condition of $-60^{\circ}C$ is estimated as the optimum condition for frozen lamb.

Numerical Study on Freezing and Thawing Process in Modular Road System (모듈러 도로시스템의 동결-융해에 대한 수치해석적 연구)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen;Kim, Dong-Gyou
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.49-62
    • /
    • 2017
  • In order to understand response of geo-structures to the freezing-thawing process in the ground, it is necessary to consider phase change of the pore water of the ground and also to understand soil interaction with structures. In this study, numerical analysis was carried out for freezing and thawing effect on the modular road system. Neumann's theoretical equation for freezing-thawing processes in porous media can be used to estimate frozen depth and heaving from basic soil properties and ground and surface temperature, but its application is limited to the case for the sediment with fully saturated condition and zero unfrozen water content. Numerical analysis of the modular road system was performed on various soil types and different ground water table as the varying freezing index. The amount of heaving in the silty soil was much larger than those in granite weathered soil or sandy soil, and lowering groundwater level reduced ground heaving induced by freezing. Numerical analysis for temperature history of the ground surface predicted residual heaving near the surface by the freeze-thaw process in silty soil. It ought to reduce stiffness and bearing capacity of the ground so that it will impair stability and serviceability of new road system. However, the amount of residual heaving was insignificant for the road system installed in weathered soil granite and sandy soil. Since modular road system is a pavement structure mounted on the supporting substructure unlike the prevalent road pavement system, strict criteria should be applied for uniform and differential settlement of the pavement system.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Physical and Mechanical Characteristics of the Antarctic Rocks Exposed to the Extreme Environment (극한환경에 노출된 남극 암석의 물리적·역학적 특성)

  • Kim, Kiju;Kim, YoungSeok;Hong, Seung Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.275-284
    • /
    • 2012
  • The Antarctic continent exposed to strong wind, very low temperature, and extremely dry condition. The freezing-thawing cycles under this extreme environment change the mechanical characteristics of rocks near the ground surface. To investigate the effect of freezing-thawing cycles under the extreme environment understand on geotechnical properties of rocks, rocks from the Antarctica were collected from two places: (1) West Antarctic Cape Burks and (2) East Antarctic Terra Nova Bay areas. The rock characteristics of these two areas were described and compared. For Terra Nova Bay area, rock characteristics of rocks near the surface and depths exceeding 2.9 m were examined. The 'near-the-surface rocks' averages of absorption rate, P-wave velocity, and unconfined compressive strength were 0.56%, 3,717 m/s, and 109MPa, respectively; while, those values of 'deep-sited rocks' were 0.24%, 4,670 m/s, and 88MPa. From the measurements, it was found that the effects of weathering were not significant on mechanical characteristics (strength) but were pronounced on physical characteristics(absorption and P-wave velocity).

Long-term Durability Characteristics of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 장기재령에서의 내구특성)

  • Jang, Bong-Seok;Choi, Seul-Woo;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.909-916
    • /
    • 2013
  • Concrete containing lightly burnt MgO has long term expansibility. It also could compensate for the thermal shrinkage of mass concrete, because the hydration of MgO proceeds at a slow pace to long-term age. Thus, lightly burnt MgO has been applied to the construction of mass concrete such as dams. Recently, the expansion characteristics of MgO concrete with fly ash that could be applied to mass concrete for the reduction of hydration heat have been studied and however, limited studies on its durability. This study investigates the long-term durability characteristics of fly ash concrete with lightly burnt MgO. The durability tests on carbonation, freezing-thawing, diffusion of chloride, and resistance to sulfate attack were carried out for MgO concrete with curing for 360 days in submerged condition with different temperature of 20 and $50^{\circ}C$. The results reveal that MgO concrete shows a greater resistance of carbonation, diffusion of chloride, and resistance to sulfate attack. On the other hand the resistance of freezing-thawing was little influenced by MgO powder.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.