• Title/Summary/Keyword: Freezing temperature

Search Result 908, Processing Time 0.033 seconds

Numerical Analysis on the Freezing Process of Internal Water Flow in a L-Shape Pipe (L자형 배관내 물의 결빙에 관한 해석적 연구)

  • Lee, Chung Ho;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.144-150
    • /
    • 2018
  • In this study, the freezing process of L-shaped pipe exposed to the outside was investigated numerically by considering the mushy zone of freezing water. From the numerical results, it was found that the flow was outwardly directed due to the influence of the L-shaped bending part in the outside exposed part of the pipe, and the ice was formed in the shape of longitudinal corrugation on the wall surface of the pipe after the bending part. It is confirmed that this phenomenon is caused by the venturi effect due to the freezing as seen in connection with the velocity distribution in the pipe. It is found that the remelting phenomenon at the end of the freezing section occur simultaneously during the process of forming the ice in the pipe section. In regard of the factors affecting freezing, it was found that the thickness of the freezing layer is increased as the exposed pipe surface temperature is decreased, and the pipe surface temperature had a significant effect on the change of the freezing layer thickness. At the same time, it was found that the freezing layer becomes relatively thin when the water inflow rate is increased. This phenomenon was caused by reducing the exposure time of freezing water due to the vigorous flow convection of the water fluid.

A study on road ice prediction algorithm model and road ice prediction rate using algorithm model (도로 노면결빙 판정 알고리즘 연구와 알고리즘을 활용한 도로 결빙 적중률 연구)

  • Kang, Moon-Seok;Lim, Hee-Seob;Kwak, A-Mi-Roo;Lee, Geun-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1355-1369
    • /
    • 2021
  • This study improved the algorithm for the road ice prediction algorithm and analyzed the prediction rate when comparing actual field measurement data and algorithm prediction value. For analysis, road and weather conditions were measured in Geumdong-ri, Sinbuk-myeon, Pocheon-si. First algorithm selected previous research result algorithm. And the 4th algorithm was improved according to the actual freezing conditions and measured values. Finally, five algorithms were developed: freezing by condensation, freezing by precipitation, freezing by snow, continuous freezing, and freezing by wind speed. When forecasting using an algorithm at the Pocheon site, the freezing hit rate was improved to 93.2%. When calculating the combination ratio for the algorithm. the algorithm for freezing due to condensation and the continuation of the frozen state accounted for 95.7%.

Studies on Effects of Kinds and Concentration of Cryoprotectants, Equilibration Time and Thawing Temperature on the Survival Rate of Rapidly Frozen Porcine Embryos (돼지 수정란의 급속동결시 내동제의 종류와 농도, 평형시간 및 융해온도에 다른 생존성에 관한 연구)

  • 오원진;오건봉;박병권;김상근;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 1994
  • This study was carried out to investigate the effects of concentration, kinds of cryoprotectants, equilibration time, optimum thawing temperature on the survival rate of rapidly frozen porcine embryos. The porcine embryos following dehydration by cryoprotectants containing sucrose were directly plunged into liquid nitrogen and thawed in 30, 35 or 37$^{\circ}C$ water bath, Survival rate was defined as development rate on in vitro culture or FDA-test. The results are summarized as follows : 1. The high survival rate of porcine frozen embryos after rapidly thawed in freezing medium was attained 2.0M DMSO, 2.0M glycerol, 2.0M propanediol, 1.5M ethyleneglycol. 2. The high survival rate of porcine frozen embryos after rapidly thawed in freezing medium was obtained using single cryoprotectant(16.6~40.0%) than mixed cryoprotectants(12.5~33.3%). 3. The eqilibration time on the survival rate of rapidly thawed porcine frozen embryos was attained after short period of time(15.0~33.3%) in the freezing medium higher than long period of time(9.10~30.0%). 4. The thawing temperature on the survival rate of rapidly thawed porcine frozen embryos was attained at 3$0^{\circ}C$ of thawing temperature(33.3~40.6%) in the freezing medium higher than 25 or 37$^{\circ}C$ of thawing temperature.

  • PDF

Influences of Freezing and Thawing Temperature on the Quality Characteristics of Mashed Red Pepper (냉해동 온도에 따른 마쇄 홍고추의 품질특성 변화)

  • Hwang, In-Guk;Jeong, Heon-Sang;Lee, Jun-soo;Kim, Hae-Young;Yoo, Seon-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.691-696
    • /
    • 2012
  • We conducted this study to investigate the quality characteristics of mashed red pepper(MRP) with different freezing(-20, -30, -40, -50, -60 or $-70^{\circ}C$) and thawing(4, 10, 20, 30, 40 or $50^{\circ}C$) temperature. Frozen and thawed MRP was evaluated for ascorbic acid contents(AsA), capsaicinoids contents, free sugar contents, ASTA value, and flavor patterns. The AsA of frozen MRP with freezing temperature showed a range of 67.08~80.35 mg/100 g FW, and the mean AsA losses after frozen were 57~64% compared to raw red pepper. Capsaicinoids contents, free sugar contents, and ASTA values of frozen MRP with freezing temperature were no significant difference compared to raw red pepper. The AsA of thawed MRP with thawing temperature showed a range of 70.34~81.59 mg/100 g FW, and the mean AsA losses after thawed were 45.12~52.69% compared to raw red pepper. Capsaicinoids contents and free sugar contents of thawed MRP with thawing temperature were no significant difference compared to raw red pepper, whereas the ASTA value decreased according to the increasing of thawing temperature. Flavor patterns of thawed MRP after $20{\sim}50^{\circ}C$ thawing were clearly different from the raw red pepper. Overall, it is recommended that the best freezing and thawing temperature for preserving the quality of MRP is freezing at $-20^{\circ}C$ and thawing at $10^{\circ}C$.

Basic Study on the Heat Transfer During Rapid Freezing of Syobean Seed by Liquid Nitrogen

  • Kawano, Toshio;Nakano, Kohei;Murata, Satoshi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.443-452
    • /
    • 1993
  • Direct freezing tests of soybean seed by liquid nitrogen were carried out at various moisture contents and the following important conclusions were drawn from the results of temperature measurements of soybean seed and photographs of bubbles generated on its surface : 1) Assuming that the temperature gradient in a soybean seed is negligible because of its small seed size and the freezing ratio is followed the Heiss's formula, and a differential equation based on the heat energy balance was introduced . The equation was easily solved by the Runge-Kutta-Gill method and the predicted values of the temperature were in good agreement with the observed data. 2) The photographs of bubble generation during freezing showed the boiling mode was nucleate, and then the most suitable formula on the nucleate boiling heat transfer was introduced from many formulate proposed up to now by fitting the calculated values based on the formula to the observed data. The formula used for the predict on of the seed temperature was as follows: $\frac{{\partial}T_s}{\partial\theta}\;=\;-\frac{{\alpha}(T_s\;-\;T_L)^{3.3}}{W(C_s\;-\;\frac{{\delta}m(CT_s\;+\;{\sigma})}{T_s^2})}$ where C = difference of the specific heat between pure ice and water m=moisture content of soybean seed $T_s$ = seed temperature $T_L$ = Temperature of liquid nitrogen W = mass of soybean seed $\alpha$ = proportional constant $\delta$ = constant depends on variety or the type of seed $\theta$ = time $\sigma$ = latent heat of melting of pure ice This study will give important information in the hydro-freezing technique by liquid nitrogen, available as a new technique of processing agricultural products in the near future.

  • PDF

Nature of Cold Injury and Resistance in Wheat and Barley (맥류의 한해와 내동성에 관하여)

  • 남윤일;연규복;구본철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.96-114
    • /
    • 1989
  • There are several meterorolgical stresses in the winter cereal crops. Among these stresses, cold injury is one of the most important stresses for wheat and barley production in Korea. The reduction in grain yield of the wheat and barley due to cold injury has occurred almost every year in Korea. The objective of the study was to get the basic information in relation to the cold injury and to detect the method minimizing the damage of cold injury. When the air temperature was the ranges of -13$^{\circ}C$ to -15$^{\circ}C$, the soil temperature at the crown part of the plant was very stable, whereas in the ranges of -2$^{\circ}C$ to -3$^{\circ}C$ the soil surface temperature was more unstable and cold than air and subterranean temperatures. The different parts of the plant in wheat and barley possess the different levels of cold hardiness. In comparison to the cold hardiness of plant parts, the leaf and crown are the less sensitive to cold injury than root and vascular transitional zone. The type and extent of stress is determined by the redistribution pattern of water during freezing. These types from freezing processes were three types: a) Equilibrium freezing pattern b) Non -equilibrium freezing pattern, c) Non-equilibrium freezing pattern typical of tender tissues. Cold hardiness in wheat plants were more harder than barley plants at vegitative stage, but inverted at the reproductive stage. Injuries by low temperature during the seasons of barley cultivation in Korea were occured mainly in four stage; in the first and third stage, frost injury occurs, the second stage, freezing injury, and the fourth stage, chilling injury.

  • PDF

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing (동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구)

  • Koh, Kyung-Taeg;Kim, Do-Gyeum;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

An Experimental Study on Sea Water Freezing Behavior Along Horizontal Cooled Cylinder With Bubbly Flow (기포를 동반한 유동장에서의 냉각원과 주위의 해수동결에 관한 실험적 연구)

  • Park, D.S.;Yoon, S.H.;Kim, M.H.;Lee, Y.H.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.825-832
    • /
    • 2001
  • This study was experimentally performed to investigate freezing behavior of sea water along horizontal cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as sea water velocity, air-bubble flow rate, and cooled-tube temperature. The shape of freezing layer, freezing rate and salinity of frozen layer were observed and measured. And the flow patterns around cooled tube were visualized using the PIV to analyze the relationship between the flow structure and the freezing characteristics. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

A Case Study on Meteorological Analysis of Freezing Rain and Black Ice Formation on the Load at Winter (겨울철 노면에 발생하는 어는 비와 블랙아이스의 기상학적 분석에 관한 사례 연구)

  • Park, Geun-Yeong;Lee, Soon-Hwan;Kim, Eun-Ji;Yun, Byeong Yeong
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.827-836
    • /
    • 2017
  • Freezing rain is a phenomenon when precipitation falls as a liquid rain drop, but freezes when it comes into contact with surfaces or objects. In this study, we investigated the predictability of freezing rain and its characteristics, which are strongly related with the occurrence of black ice using synoptic scale meteorological observation data. Two different cases occurred at 2012 were analyzed and in the presented cases, freezing rain often occurs in the low-level low pressure with the warm front. The warm front due to the lower cyclone make suitable environment in which snow falling from the upper layer can change into supercooled water. The $0^{\circ}C$ temperature line to generate supercooling water is located at an altitude of 850 hPa in the vertical temperature distribution. And the ground temperature remained below zero, as is commonly known as a condition for black ice formation. It is confirmed that the formation rate of freezing rain is higher when the thickness after 1000-850 hPa is 1290-1310 m and the thickness of 850-700 hPa layer is larger than 1540 m in both cases. It can also be used to predict and estimate the generation of freezing rain by detecting and analyzing bright bands in radar observation.