• Title/Summary/Keyword: Freezing temperature

Search Result 908, Processing Time 0.028 seconds

Studies on the soil freezing depth and change of moisture contents in evergreen plants upon subzero temperature in (강원도지역의 토양동결심 및 상록식물의 함수량 추이에 관한연구 (1))

  • 홍종운;허범양;원경열;임병춘;이기철;하상건
    • Asian Journal of Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.42-48
    • /
    • 1990
  • Experiments were conducted to investigate the soil freezing depth and pattern with freezing measuring instruments during 1988-l989 winter season in Kangwon province. Freezing measuring instrument was made with acrylic pipes which were consisted of inner and outer parts. Inner pipe was filled with 0.01 % methylene blue solution and rubber hose to protect pipe breakdown by solution freezing. Freezing measurements were carried out by observing discoloration of methylene blue solution. Moisture content of evergreen trees and ground cover plants was also examined in the winter season. The observed results are as follows: 1.In the land of I OOM above sea level, soil freezing depth became deeper as the sum of Accumulated degree-days of temperature below 0˚C(0˚C . day) increased: Soil freezing depth was 30-40cm at l00˚C, 42-43cm at 150˚C, and 47cm at 200˚C day 2.Soil freezing with vinyl mulching was less developed by l3cm at l00˚C with sum of subzero temperature, by l7cm at 200˚C than that of the bare ground. Soil of rich hulls mulching with 4Ocm was not frozen until soil freezing at the bare ground was developed to 25cm depth. 3.Cashmeron mulching was more effective than felt mulching in the heat insulation of soil. 4.Thawing of soil was done from the lowest part of the frozen in the ground to upward in the beginning and after that it was done from the surface of frozen soil to downward. Finally thawing was completed at the middle of frozen soil.

  • PDF

Physicochemical Characteristics of Rehmanniae Radix Preparata Powder by Milling with Pre-freezing Temperatures (예비동결 온도에 따른 숙지황 분말의 이화학적 특성)

  • Jang, Gwi Yeong;Park, Chan Hum;Choi, Jehun;Yoon, Ji Hye;Shin, Yu Su;Jeong, Heon Sang;Kim, Dong Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Background: Rehmanniae radix preparata (RRP) has been used as a traditional medicine and is one of the most important oriental herbal medicines. However, the physical characteristics of RRP are not suitable for use in industry. The present study was under-taken to determined the preparation method of RRP powder and the physicochemical characteristics of RRP powder by milling under different pre-freezing temperatures. Methods and Results: Moisture content, powder yield, particle size, bulk density, compressive stress, extraction yield, and 5-HMF content of PRR powders by milling with pre-freezing temperatures (-20, -40, -60, and $-80^{\circ}C$) were analyzed, and correlation among these factors was determined. Powder yield increased and particle size decreased in a pre-freezing temperature-dependent manner from -20 to $-60^{\circ}C$. The Hausner ratio increased from 1.186 to 1.225 with decreasing temperature from -20 to $-80^{\circ}C$, whereas compressive stress showed the opposite trend. Extraction yield and 5-HMF content were not significantly different between RRP powder. Significant correlations were observed among pre-freezing temperature and physical characteristics (e.g., yield, particle size, Hausner ratio, and compressive stress). Conclusions: These results suggest that the pre-freezing temperature is an important factor affecting the physical characteristics of PRR powder and applicable to the industrial production of RRP powder.

System Design and Performance Analysis of a Quick Freezer using Supercooling

  • Kim, Jinse;Chun, Ho Hyun;Park, Seokho;Choi, Dongsoo;Choi, Seung Ryul;Oh, Sungsik;Yoo, Seon Mi
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Purpose: This study was conducted for enhancing the performance of a conventional quick freezer by introducing the supercooling state, using a low-temperature coolant. Methods: In the present investigation, the supercooling process was executed prior to quick freezing for reducing the time by which the temperature passes the zone of maximum ice crystal formation. Every food has different nucleation points and hence, we used silicone oil as the coolant for supercooling for easy modification of temperature. Additionally, for quick freezing, we used liquid nitrogen spray. Results: Using the heat exchanger-type precooler with silicone oil, the temperature of the chamber was easily changed for enabling supercooling. Particularly, the results of the freezing test with garlic indicated that this system improved the hardness of garlic after it was thawed, compared to the conventional freezing method. Conclusions: Before quick freezing, if the food item is subjected to the supercooling state, the time from nucleation to the temperature reaching the frozen state ($-5^{\circ}C$, which is the maximum ice crystal formation zone) will be shorter than that incurred using quick freezing alone. The combination of the heat exchanger-type supercooler and liquid nitrogen sprayer is expected to serve as a promising technology for improving the physicochemical qualities of frozen foods.

Quality Characteristics of Korean Rice Cake by Freezing Methods (냉동 방법에 따른 떡의 품질특성 변화)

  • Lee, Hye-Jin;Ku, Su-Kyung;Choi, Hee-Don;Park, Jong-Dae;Sung, Jung-Min;Kim, Young-Boong;Choi, Hyun-Wook;Choi, Yun-Sang
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.148-154
    • /
    • 2017
  • Purpose: Frozen Korean traditional rice cakes (Sulgitteok and Garaetteok) were evaluated different conditions ($-20^{\circ}C$ and $-10^{\circ}C$) freezing (magnetic resonance quick freezing and air blast freezing) to study differences in quality characteristics. Methods: Experiments analyze Korean rice cakes for water content, water activity, color, textural properties, and sensory characteristics. Results: Moisture content showed high value at $-20^{\circ}C$ freezing regardless of freezing method. Water activity was higher at $-20^{\circ}C$ than $-10^{\circ}C$, and water activity higher magnetic resonance quick freezing than air blast freezing. The lightness values were higher $-20^{\circ}C$ freezing temperature compare to $-10^{\circ}C$ freezing temperature. Hardness and chewiness were the lowest $-20^{\circ}C$ magnetic resonance quick freezing. sensory evaluation both Sulgitteok and Garaetteok showed better overall acceptability at $-20^{\circ}C$ magnetic resonance quick freezing. Conclusion: Therefore, the $-20^{\circ}C$ magnetic resonance quick freezing method resulted in favorable textural properties and sensory characteristics.

A Study on Freezing Characteristics of Pavements Using Data of Test Road (시험도로 자료를 이용한 포장의 동결특성 연구)

  • Jeong, Jin-Hoon;Bae, Sung-Ho;Kwon, Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.87-95
    • /
    • 2005
  • To prevent the lowering of structural capability due to freezing and thawing in cold winter, numerous researches on frost heaving have been performed. As the result, the freezing index contour map of the Korea peninsula has been made for the design of the anti-freezing layer of pavements. However, the validity of the anti-freezing layer needs to be evaluated because systematic investigations on the variation of freezing depth with the thickness and material types of pavement layers and the configuration of the ground have been rarely performed. The freezing index of the Korea Highway Corporation test road site was calculated and the freezing depths of the concrete and asphalt pavements of the test road were investigated using the ambient and pavement temperature and water content. In addition, the investigated freezing depths were compared to the values estimated by existing freezing depth models. This is the preliminary study on the freezing-related data measured at the test road. The results with higher reliability will be produced by the long-term accumulation of the data and the analysis on it.

  • PDF

Numerical Investigation into Behavior of Retaining Wall Subject to Cycles of Freezing and Thawing (동결-융해 반복작용에 노출되는 옹벽의 거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • This paper presents the results of a numerical investigation into the behavior of retaining wall subject to cycles of freezing and thawing due to seasonal temperature change. The thermo-hydro-mechanical coupled finite element modeling strategy was first established to simulate the wall behavior. A series of finite element analyses were then performed on a range of conditions representing seasonal temperature change characteristics. The results indicated that the average freezing temperature and the number of cycles of freezing and thawing were the primary influencing factors for the wall behavior. Also revealed was that the duration of freezing period does not significantly affect the wall displacement and the lateral earth pressure, and that the earth pressure on the wall does not significantly change due to the freezing and thawing action suggesting that the increase in the wall displacement during the freezing and thawing action may be attributed to degradation of backfill due to the freezing and thawing action.

Effect of Novel Quick Freezing Techniques Combined with Different Thawing Processes on Beef Quality

  • Jo, Yeon-Ji;Jang, Min-Young;Jung, You-Kyoung;Kim, Jae-Hyeong;Sim, Jun-Bo;Chun, Ji-Yeon;Yoo, Seon-Mi;Han, Gui-Jung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.777-783
    • /
    • 2014
  • This study investigated the effect of various freezing and thawing techniques on the quality of beef. Meat samples were frozen using natural convection freezing (NF), individual quick freezing (IQF), or cryogenic freezing (CF) techniques, followed by natural convection thawing (NCT) or running water thawing (RT). The meat was frozen until the core temperature reached $-12^{\circ}C$ and then stored at $-24^{\circ}C$, followed by thawing until the temperature reached $5^{\circ}C$. Quality parameters, such as the pH, water binding properties, CIE color, shear force, and microstructure of the beef were elucidated. Although the freezing and thawing combinations did not cause remarkable changes in the quality parameters, rapid freezing, in the order of CF, IQF, and NF, was found to minimize the quality deterioration. In the case of thawing methods, NCT was better than RT and the meat quality was influence on the thawing temperature rather than the thawing rate. Although the microstructure of the frozen beef exhibited an excessive loss of integrity after the freezing and thawing, it did not cause any remarkable change in the beef quality. Taken together, these results demonstrate that CF and NCT form the best combination for beef processing; however, IQF and NCT may have practical applications in the frozen food industry.

Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube (U자형 배관 내 결빙에 대한 해석적 연구)

  • Park, Yong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.52-58
    • /
    • 2019
  • This study numerically analyzed the icing process in a U-shaped pipe exposed to the outside by considering the mushy zone of freezing water. Numerical results showed that the flow was pulled outward due to the U-shaped bend in the freezing section exposed to the outside, which resulted in the ice wave formation on the wall of the bended pipe behind. At the same time, the formation of a corrugated ice layer became apparent due to the venturi effect caused by the ice. The factors affecting the freezing were investigated, including the change of the pipe wall temperature, the water inflow velocity, and the pipe bend spacing. It was found that, as a whole, the thickness of the freezing layer increased as the pipe wall temperature decreased. It was also found that the freezing layer became relatively thin when the inflow rate of water was increased, and that the spacing of the pipe bends did not significantly impact the change in the freezing layer.

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Effect of Freezing Temperature on the Quality of Beef Loin Aged after Thawing (동결온도가 해동후 숙성한 우육의 품질에 미치는 영향)

  • 정인철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.871-875
    • /
    • 1999
  • This study was carried out to investigate the effects of freezing temperature on the quality of thawing aged beef loin. Drip loss was higher at 3oC freezing than at 20oC freezing, showing 17.21% drip loss after 6 days aging by 3oC freezing, 14.92% drip loss 12 days aging by 20oC freezing. Cooking loss by both water bath and pan boiling were decreased with increased in aging days. The salt soluble protein extractability of the beef loin was increased until 9 days aging by both 3oC and 20oC freezing, after that was decreased. The L value of the beef loin was high until 9 days aging by 3oC freezing, after that the L value of that was decreased. And the aging at 20oC freezing was high significantly with increased aging days. The a value of the beef loin was low significantly in 6 and 9 days aging by 3oC freezing, 20oC freezing was low significantly with increased aging days. The b value of the beginning of aging was higher with increased aging days. The percentage of denatured myoglobin of the beginning of aging was the highest, then those of 3oC and 20oC freezing showed 89.70% and 88.00%, respectively. The shear force of the beef loin was decreased with aging days, but the myofibrillar fragmentation index increased with aging days. The pH of the beef loin increased until 6 days of aging by both 3oC and 20oC freezing, after that the pH decreased.

  • PDF