• Title/Summary/Keyword: Freezing temperature

Search Result 909, Processing Time 0.031 seconds

A Study on Freezing Efficiency Improvement of Horizontal-Plate Freezer for Fishing Vessel (어선용 수평 냉각판 냉동장치의 냉동 효율 개선에 관한 연구)

  • Lee, Jae-Chul;Jeong, Ji-Ho;Kim, Byung-Mok;Shin, Sung-Chul;Kim, Soo-Young;Jeong, Bo-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • The economic efficiency for fishery products can be related to their freshness and the quality. In order to freshly storage the product, freezing equipment system is necessary for fishing vessels. For this purpose, the horizontal plate freezer (HPF) is mostly used. In this research, our major objective is to improve the freezing performance of the HPF. Therefore, it is important to analyse the relationship between the shape of channels and the cooling temperature of the HPF. In order to save calculation time while checking the trend analysis between shape and performance, we used scaled models, and evaluate the cooling temperature of full scale model based on trend analysis results. The produced HPF in domestic was used, and the same operating conditions are considered. Based on this paper, the future research will be a comparison and verification through the experiments.

Resposes of Two Cold - Regulated Genes, BN28 and BN115, in Field -Grown Canola (Brassica napus L.) (포장에서 케놀라 저온반응성 유전자 발현)

  • Moontae, Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 1995
  • Cold acclimation involves changes in gene expression. BN28 and BN115 are two genes which are regulated by cold temperature and assumed having roles in cold acclimation. The objectives of this experiment was to explore the expression of BN28 and BN115 under field conditions. Six winter cultivars were planted at three different dates during the fall. The expression of the genes was determined by northern blot analysis of total RNA taken from leaves 15 to 30 day-intervals after planting. The expression of the two genes was detected within 15 days after planting well before onset of freezing tolerance in plants. This suggestes either their expression was a prerequisite of the freezing tolerance or their expression was regulated by other environmental factors as well as temperature. Two genes showed a different expression pattern suggesting they had a different regulatory system. Although timecourse increase in expression of the cold-regulated genes was matched with increase in freezing tolerance, the difference of expression in cultivar level at specific times of measurement was not correlated with freezing tolerance at the moment.

  • PDF

Physicochemical Properties of Pork Neck and Chicken Leg Meat under Various Freezing Temperatures in a Deep Freezer

  • Kim, Eun Jeong;Lee, SangYoon;Park, Dong Hyeon;Kim, Honggyun;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.444-460
    • /
    • 2020
  • This study was conducted to investigate the effects of freezing and storage temperature (-18℃, -50℃, and -60℃) on the physicochemical properties of pork neck and chicken leg meat in home-scale deep freezers. Pork neck was cut into a thickness of 3 cm (9×9×3 cm, 150 g), individually packed in air-containing packages, and stored at different temperature (-18℃, -50℃, and -60℃) for 6 months. Chicken leg meats were prepared (10 cm long, weighing 70 g) and packed in the same manner. Frozen samples were thawed at 2℃. Physicochemical properties such as thawing loss, cooking loss, water-holding capacity, color, volatile basic nitrogen (VBN), and thiobarbituric acid reactive substances (TBARS) were evaluated. The samples frozen by deep freezing (-60℃) was favorable with respect to thawing loss, color, and VBN. Samples frozen at -60℃ had lower values of thawing loss and VBN than those frozen at -18℃ for all storage periods (p<0.05). Color parameters were more similar to those of fresh meat than to those of samples frozen at -18℃ for 6 months. The TBARS of all samples were below 0.3 mg malondialdehyde/kg, thereby indicating oxidative stability of lipids. Consequently, deep freezing at -60℃ may be acceptable for maintaining the quality of fresh pork neck and chicken leg meat for 6 months without deterioration.

Cryosurgery of Lung with 2.4 mm Cryoprobe: An Experimental in vivo Study of the Cryosurgery in Canine Model (냉동침을 이용한 폐 냉동수술의 동물실험: 냉동수술 방법의 비교 실험)

  • Kim Kwang-Taik;Chung Bong-Kyu;Lee Sung-Ho;Cho Jong-Ho;Son Ho-Sung;Fang Young-Ho;Sun Kyung;Park Sung-Min
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.520-526
    • /
    • 2006
  • Background: The clinical application of cryosurgery the management of lung cancer is limited because the response of lung at low temperature is not well understood. The purpose of this study is to investigate the response of the pulmonary tissue at extreme low temperature. Material and Method: After general anesthesia the lungs of twelve Mongrel dogs were exposed through the fifth intercostal space. Cryosurgical probe (Galil Medical, Israel) with diameter 2.4 mm were placed into the lung 20 mm deep and four thermosensors (T1-4) were inserted at 5 mm intervals from the cryoprobe. The animals were divided into group A (n=8) and group B (n=4). In group A the temperature of the cryoprobe was decreased to $-120^{\circ}C$ and maintained for 20 minutes. After 5 minutes of thawing this freezing cycle was repeated. In group B same freezing temperature was maintained for 40 minutes continuously without thawing. The lungs were removed for microscopic examination on f day after the cryosurgery. In four dogs of the group A the lung was removed 7 days after the cryosurgery to examine the delayed changes of the cryoinjured tissue, Result: In group A the temperatures of T1 and T2 were decreased to the $4.1{\pm}11^{\circ}C\;and\;31{\pm}5^{\circ}C$ respectively in first freezing cycle. During the second freezing period the temperatures of the thermosensors were decreased lower than the temperature during the first freezing time: $T1\;-56.4{\pm}9.7^{\circ}C,\;T2\;-18.4{\pm}14.2^{\circ}C,\;T3\;18.5{\pm}9.4^{\circ}C\;and\;T4\;35.9{\pm}2.9^{\circ}C$. Comparing the temperature-distance graph of the first cycle to that of the second cycle revealed the changes of temperature-distance relationship from curve to linear. In group B the temperatures of thermosensors were decreased and maintained throughout the 40 minutes of freezing. On light microscopy, hemorrhagic infarctions of diameter $18.6{\pm}6.4mm$ were found in group A. The infarction size was $14{\pm}3mm$ in group B. No viable cell was found within the infarction area. Conclusion: The conductivity of the lung is changed during the thawing period resulting further decrease in temperature of the lung tissue during the second freezing cycle and expanding the area of cell destruction.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Changes of Characteristics in Red Pepper by Various Freezing and Thawing Methods (홍고추의 저장온도 및 해동조건에 따른 물리화학적 특성 변화)

  • Lee, Hye-Eun;Lim, Chai-Il;Do, Kyung-Ran
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.227-232
    • /
    • 2007
  • The development of an effective long-term storage protocol for harvested fresh pepper is urgently required to increase the market for pepper products. The protocol must minimize quality loss, so that the product may be used either as a spice or as a raw material for processed pepper products, both in the home and in food processing plants. We investigated the optimum size of pepper fruits, freezing temperatures, storage periods, and thawing methods, to establish an optimum storage protocol. This study was conducted not only to develop freezing and thawing methods for long term storage of harvested red pepper, but also to develop processed pepper products utilizing the stored pepper. We aimed to expand the pepper products market and to increase the incomes of pepper growers. Whole red pepper, sliced red pepper, and crushed red pepper were frozen and stored at $-5^{\circ}C,\;-20^{\circ}C,\;or\;-40^{\circ}C$. The soluble solid content and the vitamin C level showed maximal stability at $-40^{\circ}C$, although total free sugars decreased on storage at all temperatures tested. Such Changes were more marked at $-5^{\circ}C$ than at the other(lower) temperature tested. The vitamin C content of whole red pepper was higher than that of sliced red pepper or crushed red pepper. Room-temperature thawing resulted in twice the drip loss seen on low temperature($5^{\circ}C$) thawing or microwave oven thawing. Brown discoloration was a serious problem with room temperature thawing. Total free sugars were higher in samples thawed at low temperature or in the microwave oven, compared to the level seen after room-temperature thawing. pepper samples thawed at low temperature scored higher in sensory tests than samples thawed at room temperature.

Changes in the $Ca^{2+}\;and\;Mg^{2+}$ - dependent Adenosine Triphosphatase Activity and Ultrastructure of Marine Fishes by Partial Freezing III. Changes in the Ultrastructure of Muscle Tissues of Yellowtail during Low-temperature Preservation (a해산어의 부분동결에 의한 $Ca^{2+}\;및\;Mg^{2+}$ -dependent Adenosin Triphosphatase 활성 및 근섬유의 미세구조 변화 III. 저온저장 과정중 방어 근육조직의 미세구조의 변화)

  • 최경호;박찬성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.629-636
    • /
    • 1991
  • Yellowtail fishes(Seriola quinqueeradiata) were submitted to the storages using ice-cooling($0^{\circ}C$), partial freezing($-3^{\circ}C$) and freezing $-20^{\circ}C$) method. Changes in the structures of muscle during storage at different temperatures were investigated. The ice-cooling and partial freezing storage caused early decomposition of glycogen granules and mitochondrial inner membrane, but it was accorded to much slower manner comparing with that of ice-cooling storage. The scars of ice crystals were appeared after three days of storage. The number and size of the crystal increased as progressing of the storage. They were circular and mostly located between fibers. When using the freezing storage, glycogen granules were mostly found from the muscle cell even after fourteen days of storage. Mitochonidral inner membrane maintained their integrity. The scars of ice crystals were also found, however, different from those of partial freezing storage. Their existing sites were random and their shapes were irregular. In many cases, they located in the fiber and had keen edges. Fibers were broken mostly at the Z-lines on fourteen days of storage. From these results, it was concluded that partial freezing storage can repress autolytic enzymic action and can reduce the physical damage from ice crystals which is caused by freezing.

  • PDF

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

An experimental study of freezing phenomenon with supercooled water region (과냉각을 동반하는 물의 동결현상에 관한 실험)

  • Yoon, J.I.;Kim, J.D.;Kum, J.S.;Chu, M.S.;Kamata, Y.;Kato, T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.104-111
    • /
    • 1997
  • The freezing phenomenon of saturated water with the supercooled region in a horizontal circular cylinder has been studied experimentally by using the holographic real time interferometry technique. From the experiments, it was found that there were three types of freezing patterns. The first is the annular ice layer growing from the cylinder surface at a high cooling rate; the next is the asymmetric ice layer at a moderate cooling rate; and the last is the instantaneous ice layer growth over the full region at lower cooling rate. As the water was coolde from room temperature to the subfreezing point passing through the density inversion point, the freezing pattern was largely affected by the inversion phenomenon, which had much effected the free convection and was susceptible to influences from the cooling rate. When the cooling rate is high, supercooling energy is released before the water is sufficientry mixed by free convection. On the other hand, when the cooling rate is low, there is much time for the water to be mixed by free convection. This seems to be the reason why the different ice layer growths occur.

  • PDF

Ultrarapid Freezing of Mouse Ova (생쥐난자의 초급속동결)

  • 박영식;서태광;이택후;전상식
    • Journal of Embryo Transfer
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 1995
  • This study was carried out to efficiently use the ultrarapid freezing method in the cryopreservation of mouse ova. For this, the effects of dehydration method, oval vigour and $0^{\circ}C$ controlling method on post-thawing viability were investigated. Fresh mouse ova were dehydrated in mPBS with 3.5M DMSO and /or 0.25M sucrose, and directly immersed in L$N_2$ for ultrarapidly freezing. The frozen ova were thawed at 37$^{\circ}C$, rehydrated in mPBS with 0.25M sucrose, and then repeatedly washed in HAM's Fl0 before evaluating the morphological normality of frozen-thawed ova. The results obtained showed that there was difference between treatments in a experiment. 1) The post-thawing viability of ova dehydrated in multi-step (48.4$\pm$13.8%) was higher than that of ova in two-step (40.9$\pm$14.0%). 2) The post-thawing viability of fertilized ova (87$\pm$14.0%) was significantly(p<0.0l) higher than that of unfertilized ova (5.4$\pm$5.4%). 3) The post-thawing viability of ova dehydrated and rehydrated using a cooling machine (95.8$\pm$4.2%) was significantly(p<0.05) higher than that on ice(84.1$\pm$9.9). In conclusion, in order to efficiently cryopreserve ova in vitro with ultrarapidly freezing method, highly viable embryos should be selected, heavy osmotic shock to the dehydrating ova should be avoided, and embryos in high osmotic condition were dehydrated and rehydrated in a constantly low temperature.

  • PDF