• 제목/요약/키워드: Freeze thaw test

검색결과 166건 처리시간 0.028초

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Slip-resistant bolted connections under freeze-thaw cycles and low temperature

  • A. Fuente-Garcia;M.A. Serrano-Lopez;C. Lopez-Colina;F., Lopez-Gayarre
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.251-262
    • /
    • 2023
  • There are many examples of steel structures subjected to severe environmental conditions with bolted connections directly exposed to extreme climatic agents such as freeze-thaw cycles or low temperatures. Some examples are: steel bridges, mining transfer towers, wind towers... These service conditions neither are included in Eurocode 3 or EN1090-2, nor there are references in other international standards. In this experimental research, 46 specimens of non-slip joints with HV M20 bolts and four different types of contact surfaces have been studied. Half of the specimens were subjected to fourteen twelve-hours freeze-thaw cycles, with periodic immersion in water and temperature oscillation. Subsequently, half of the connections were subjected to a slip test under monotonic load at temperature of -20 ± 0.5 ℃ and the other half at room temperature. The results were compared with others equal joints not subjected to freeze-thaw cycles and kept at room temperature for the same time. This finally resulted in 4 sets of joints by combining the freeze-thaw degradation or not with the low-temperature conditions or not in the slip testing. Therefore, a total of 16 different conditions were studied by also considering 4 different contact surfaces between the joined plates in each set. The results obtained show influence of environmental conditions on the slip resistant capacity of these joints.

염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구 (A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw)

  • 박상순;소병탁
    • Corrosion Science and Technology
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

실링 테이프 적용에 따른 시공조인트 균열 저항성 평가 (Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape)

  • 이재준;이선행;김두병;이진욱
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향 (Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar)

  • 유재철;김규용;이상규;황의철;남정수
    • 한국건설순환자원학회논문집
    • /
    • 제7권4호
    • /
    • pp.438-444
    • /
    • 2019
  • 본 연구에서는 모르타르의 동결융해피해에 미치는 폴리프로필렌섬유의 영향을 실험적으로 검토하였다. 섬유를 혼입하지 않은 섬유무보강 모르타르와 폴리비닐알코올섬유를 혼입한 모르타르를 비교 대상으로 하여 폴리프로필렌섬유의 혼입이 300사이클의 동결융해시험 후 모르타르의 압축 및 휨특성에 미치는 영향을 평가하였다. 또한, 300사이클의 동결융해 시험 후 모르타르의 질량감소율, 상대동탄성계수 및 공극크기분포에 대한 시험을 실시하였다. 그 결과, 섬유종류에 관계없이 섬유무혼입 모르타르에 비해 섬유혼입 모르타르는 300사이클의 동결융해시험 후 압축강도 및 휨강도의 역학적 성능저하와 질량감소율의 증가를 억제하는 것이 가능했다. 한편, 300사이클의 동결융해시험 후 모르타르의 공극감소에 대한 저항에 폴리비닐알코올섬유뿐만 아니라 폴리프로필렌섬유가 효과적으로 작용할 수 있는 것을 확인했으나 폴리프로필렌섬유를 혼입한 모르타르의 동결융해저항성을 향상시키기 위해서는 폴리비닐알코올섬유에서 기대할 수 있는 시멘트매트릭스와의 결합효율을 증가시킬 필요가 있다.

동결-융해작용이 흙의 제강도특성에 미치는 영향(I) (Effects of the Freeze/Thaw Process on the Strength Characteristics of Soils(1))

  • 유능환;박승법
    • 한국농공학회지
    • /
    • 제31권2호
    • /
    • pp.43-53
    • /
    • 1989
  • In this research programs, a series test was conducted to show the effects of freeze/thaw process on the various soil properties. The tests were carried out taken from the west sea shore of Korean peninsular and the west sea shore of Scotland, and their results are as follows; 1. There was a positive total heave in a freezing run, although water may he expelled for the sample initially. The water flow must he reverse' from expulsion to intake. 2. The confining pressure had an overriding influence on the heave and frost penetration, a sudden change of the axial strain at failure with strain rate was observed occuring at a strain rate between 10-5 and 10-6, and the initial friction angle of frozen clay was appeared zero. 3. There was shown a significant decrease in liquid limit of soil which was subjected to freeze/thaw process for the initial value of about 20% because of soil particles aggregation. 4. The cyclic freeze/thaw caused a sinificant reduction in shear strength and its thixotropic regain. The frozen/thawed soil exibited negative strength regain, particularly at high freeze/thaw cycles. 5. The freezing temperature greatly influenced on the failure strength of soils and this. Trend was more pronounced the lower the freezing temperature and shown the ductile failure with indistinct peaks.

  • PDF

The effects of different cement dosages, slumps and pumice aggregate ratios on the freezing and thawing of concrete

  • Turkmen, Ibrahim;Demirboga, Ramazan;Gul, Rustem
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.163-175
    • /
    • 2006
  • This research was conducted to determine effect of pumice aggregate ratio, cement dosage and slumps on freeze-thaw resistance, density, water absorption and elasticity of concrete. In the first batch, $300kg/m^3$ cement dosage were kept constant and pumice ratios were changed as 25%, 50%, 75% and 100% of replacement for normal aggregate by volume for $3{\pm}1cm$, $5{\pm}1cm$ and $7{\pm}1cm$ slumps. Other batches were prepared with $200kg/m^3$, $250kg/m^3$, $350kg/m^3$, $400kg/m^3$ and $500kg/m^3$ cement dosages and 25% pumice aggregate +75% normal aggregate at a constant slump. Test results showed that when pumice-aggregate ratio decreased the density and freeze-thaw resistance of concretes increased. With increasing of cement dosage in the mixtures, density of the concretes increased, however, freeze-thaw resistance of concretes decreased. Water absorption of the concrete decreased with increasing cement dosage but increased with the pumice ratio. Water absorption of the concrete also decreased after freeze-thaw cycles. Freeze-thaw resistance of concretes was decreased with increasing the slumps.

연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향 (The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete)

  • 박상준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.161-168
    • /
    • 2008
  • 해양콘크리트의 대표적인 내구성 열화요인이라 할 수 있는 동결융해나 염해의 경우는 콘크리트내의 공극특성에 따라 침투 및 확산특성이 크게 상이하게 되는데, 이는 동결융해저항성 확보를 목적으로 사용되고 있는 AE제의 종류나 사용량 그리고 그의 경시변화 특성 등과 매우 밀접한 관계가 있다. 따라서 본 연구에서는 굳지않은 콘크리트의 목표 공기량을 각각 4~6%와 8~10%로 계획하여 실내시험을 실시한 후, 모의부재에서는 4~6%를 대상으로 평가하였다. 실험결과, 경화콘크리트의 공기량은 재령 7일에서 각각 2.5~5.2%, 재령 28일에서는 각각 2.4~5.1%정도로서 비빔직후 목표공기량의 절반수준인 것으로 나타났고, 동결융해 반복에 따른 스케일량은 목표공기량 8~10%의 경우가 4~6%에 비해 미미한 수준에서 다소 유리한 것으로 평가되었다. 한편, 모의부재에서 채취한 코어공시체의 동결융해 및 염화물 확산특성에서는 동일배합조건의 실내시험 결과에 비해 다소 불리한 것으로 나타났는데, 실내실험 결과에 비해 동결융해는 106%, 염화물 확산계수는 160% 수준인 것으로 나타났다.

고강도콘크리트의 동결융해저항에 미치는 기포조직의 영향 (Effect of Air Void System of High Strength Concrete on Freezing and Thawing Resistance)

  • 김생빈
    • 콘크리트학회지
    • /
    • 제4권1호
    • /
    • pp.89-96
    • /
    • 1992
  • 콘크리트의 내동해성은 일반적으로 공기량이나 기포조직 및 분포에 따라 크게 영향을 받으며 콘크리트의 강도와도 관련이 있는 것으로 알려져 있다. 본 연구에서는 고강도콘크리트의 동결융해 저항성에 미치는 공기량 및 기포조직 특히 간격계수의 영향에 관한 실험적 연구로서 우선 압축강도는 Non-AE콘크리트를 대상으로 400-500kg/$\textrm{cm}^2$를 목표로 하였고, 실험결과 내구성지수가 10~20%정도에 불과하므로 다음단계로 공기량 2~12%인 AE콘크리트로 하여 내구성 향상을 도모하였다. 이 때 단위시멘트량, 물\ulcorner시멘트비등을 변화시킨 20종류의 콘크리트 배합에 대해 500cycle까지 동결융해시험을 실시하였다. 결론적으로 동결융해의 저항성은 물\ulcorner시멘트비 보다는 공기량과 더 밀접한 관계가 있었고 임계내구성지수에 대응하는 간격계수는 물\ulcorner시멘트비에 따라 다르다는 사실을 알 수 있었다.