• Title/Summary/Keyword: Freeze drying process

Search Result 155, Processing Time 0.024 seconds

Effect of Acid Treatment Process on the Physicochemical Properties of Gelatin Extracted from Pork Skin (산처리 공정에 따라 추출한 돈피 젤라틴의 이화학적 특성에 관한 연구)

  • Yeom Geun-Woong;J Andrieu;Min Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • The objective of this study was to investigate the physicochemical characteristics of gelatin extracted from pork skin under soaking in various acid solutions (lactic acid, acetic acid, and citric acid). Gelatin sol was extracted at 8$0^{\circ}C$, frozen at -2$0^{\circ}C$ and lyophilized it for 3 days to be completely dried in freeze drying unit. In the evaluation of gelatin quality, gelatin soaked in citric acid showed higher L- and a-values than those of any other gelatin (p<0.05). Gelatin treated by acetic acid showed the highest gel strength, cohesiveness, and brittleness. The content of hydroxyproline amino acid in gelatin treated by acetic acid was larger than one of gelatin treated in lactic and citric acid in order. From the experimental results, the highest quality of gelatin in all of period, which was soaked in acetic acid and lactic acid, has a more good quality than gelatin soaked in citric acid.

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

Physicochemical properties and microencapsulation process of rice fermented with Bacillus subtilis CBD2 (Bacillus Subtilis CBD2로 배양된 백미 발효물의 미세캡슐 제조 및 물리화학적 특성)

  • Lee, Dae-Hoon;Park, Hye-Mi;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • This study was conducted to examine the physicochemical properties and micro-encapsulation process of rice fermented with Bacillus subtilis CBD2. The viable bacterial cell, pH, and amylase activity of the rice liquid culture were 7.61 log CFU/mL, pH 5.08 and 159.43 units/mL, respectively. The micro-encapsulated rice liquid culture was manufactured via spray drying with different forming agents: i.e., alginic acid 1.0% and chitosan 0.3%, 0.5%, and 1.0%. The moisture contents of the spray-dried powders were approximately 2.90~3.68%. The color of the L and a value decreased whereas that of the b and ${\Delta}E$ value increased. The particle size and outer topology of the spray-dried rice liquid culture were $48.13{\sim}68.48{\mu}m$ and globular, respectively. The water absorption index of the spray-dried powder (2.40~2.65) was lower than that of the freeze-dried powder (2.66). The water solubility index of the spray-dried powder (9.17~10.89%) was higher than that of the freeze-dried powder (7.12%). The in vitro dissolution was measured for five hours in pH 1.2 simulated gastric fluid, and pH 6.8 and pH 7.4 simulated intestinal fluids, using a dissolution tester at $37^{\circ}C$ with 50 rpm agitation. The amylase survival in the fermented rice was 85.93% through the spray-drying and it was very effectively controlled.

Optimized Processing Condition of Production of Nannochloropsis oculata under Light-emitting Diode (LED) Condition (LED배양조건에서 미세조류 Nannochloropsis oculata의 생산 효율성을 높이는 공정 최적화)

  • Lee, Nam Kyu
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.754-759
    • /
    • 2017
  • The 100 l culture system was made on the basis of LED light, and Nannochloropsis oculata was cultured in f/2 medium at light intensity ($100{\mu}mol/m^2/s$), culture temperature ($20^{\circ}C{\pm}1^{\circ}C$) and LD cycle (12hr). As a result, the maximum biomass of 1.07 g/l was cultured as a result of 100 l mass culture at $100{\mu}mol/m^2/s$ and 24 mg/l nitrate concentration in LED blue (475 nm). The extraction was carried out using sonicator, homogenizer and chemical method 0.5M HCl shredding method. The contents of chlorophyll a, chlorophyll b and carotenoid were 1.6, 0.5 and 0.3 mg/g cell. When using homogenizer, it was measured at 1.0, 0.6 and 0.2 mg/g cell. The chemical breakdown method of 0.5M HCl, chlorophyll a, b, and carotenoid contents were measured as 0.9, 0.8, 0 mg/g cell. The highest amount of biomass during the distruption time was measured at 3.6 mg/g cell at 15 min disintegration and acetone, 3.6 mg/g cell of acetone, methanol, and ethanol were measured as effective solvents. Concentration was measured by using microfilter, disk type continuous centrifuge and tubular type continuous centrifuge were 16.0, 1.1 and 0.5 g/l, respectively. Four kinds of equipment such as hot air dryer, vacuum dryer, spray dryer and freeze dryer were tested to optimize the drying process. As a result, the recovery rates of spray dryer and freeze dryer were 80% and 60%.

Pre-treatment conditions on the powder of Tenebrio molitor for using as a novel food ingredient (갈색거저리의 식품 원료화를 위한 분말제조 조건 확립)

  • Chung, Mi Yeon;Kwon, Eun-Young;Hwang, Jae-Sam;Goo, Tae-Won;Yun, Eun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Although the mealworm larva (Tenebrio molitor) is high protein source, aversion feature of the larva made it difficult for consuming as a food. In this study, we established optimal powder manufacturing process for T. molitor larva for using as a novel food. For this purpose, it should be feed with the bran sterilized by water vapor for 3-5 days, starved without water or food for 3 days, and then the larvae were sterilized before freeze-drying. The sterilized T. molitor was lyophilzed and grinded by a blender. A safety of the powder as a food was validated by evaluation of Raw 264.7 macrophage cytotoxicity using MTS assay. As above results, we propose that optimal powder manufacturing process established in this study can be used in industrial production of T. molitor as a novel food.

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea (Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성)

  • Kim, Eun-Ji;Kwon, Gu-Joong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2013
  • The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.

A Study on the Dimensional Stability of Archaeological Waterlogged Salix koreensis Andersson Treated with Recycled PEG (재활용 PEG를 이용한 수침 고버드나무의 치수안정화 연구)

  • Yang, Seok-Jin;Lee, Soo;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.635-641
    • /
    • 2014
  • Archaeological waterlogged woods require a process of dimensional stabilization for their conservation. PEG is the most widely used in the conservation of archaeological waterlogged wood. One of the easiest and commonly used methods is the impregnation of 40% polyethylene glycol followed by vacuum freeze drying. However, the waste fluid produced from the PEG treatment is black in color and has a severe odor due to the organic matter extracted from the wood. Thus It cannot be recycled and it was just thrown out. Color of waste fluid can be decolored with oxidation reaction by hydrogen peroxide. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Dimensional stability of archaeological waterlogged Salix koreensis Andersson was studied with pure or recycled PEG. The ratio of impregnation solutions were 10:0, 7:3, 5:5, 3:7, 0:10 (pure PEG : recycled PEG). Impregnation process was carried out by putting the wood specimens 10% PEG solution for 5days, 20% for 5 days, 30% for 5 days finally 40% for 5 days. All of the specimens showed the weight change rate of 25%. SEM results provided that the dimensional change of were less than 4% PEG impregnated specimens. Comparing with pure PEG impregnation system, conservation precess mixed PEG also showed no significant changes. Conclusively, the recycled PEG can be used for archeological waterlogged wood conservation precess.

Structural and Electrochemical characterization of LiCoO2 Nano Cathode Powder Fabricated by Mechanochemical Process (기계 화학법에 의해 제작된 나노 LiCoO2 양극 분말의 구조 및 전기화학적 특성)

  • Choi, Sun-Hee;Kim, Joo-Sun;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • $LiCoO_2$ cathode powders with round particle shaped and nano grain sized of 70-300nm were synthesized by a mechanochemical method. The surface of Li-Co precursor prepared by freeze drying method was modified by $K_2SO_4$ coating and ball milling was used for the coating process. The precursor was crystallized to high temperature form of $LiCoO_2$ at $800^{\circ}C$ and the grain growth was inhibited by the $K_2SO_4$ coating effect. The $K_2SO_4$ coating was not decomposed at $800^{\circ}C$ and prevented the contact in the Li-Co precursor particles. The nano-sized $LiCoO_2$ powder had tetragonal phase and it affected the Li diffusion through the surface of particles. It means that the anode materials for hight performance battery should be satisfied not only small particle size but phase contol on the surface of particles. In this study, the powder characteristics and rate capabilities were compared with a commercial powder and the nano-sized $LiCoO_2$ powder fabricated by the mechanochemical method. And the crucial factor which affects on battery performance was also examined.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF