• Title/Summary/Keyword: Freeze - thaw

Search Result 430, Processing Time 0.023 seconds

Experimental study on damage and debonding of the frozen soil-concrete interface under freeze-thaw cycles

  • Liyun Tang;Yang Du;Liujun Yang;Xin Wang;Long Jin;Miaomiao Bai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.663-671
    • /
    • 2023
  • Freeze-thaw cycles induce strength loss at the frozen soil-concrete interface and deterioration of bonding, which causes construction engineering problems. To clarify the deterioration characteristics of the interface under the freeze-thaw cycle, a frozen soil-concrete sample was used as the research object, an interface scanning electron microscope test under the freeze-thaw cycle was carried out to identify the micro index information, and an interface shear test was carried out to explore the loss law of interface shear strength under the freeze-thaw cycle. The results showed that the integrity of the interface was destroyed, and the pore number and pore size of the interface increased significantly with the number of freeze-thaw cycles. The connection form gradually deteriorates from surface-to-surface contact to point-to-surface contact and point-to-point contact, and the interfacial shear strength decreases the most at 0-3 freeze-thaw cycles, with small decreases from to 3-8 cycles. After 12 freeze-thaw cycles, the interfacial shear strength tends to be stable, and shear the failure occurs internally in the soil.

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng;Qing Wang;Jiaqi Wang;Yan Han
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.249-260
    • /
    • 2024
  • In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

Near surface characteristics of concrete: prediction of freeze/thaw resistance

  • Chan, Sammy Yin Nin;Dhir, Ravindra K.;Hewlett, Peter C.;Chang, Da Yong
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.403-412
    • /
    • 1994
  • The durability of concrete is related to the permeation characteristics of its near surface. An attempt was made to use the permeation characteristics namely, absorptivity, permeability and diffusivity, to predict the freeze/thaw resistance of concrete. Test results indicate that in general, there was a trend that freeze/thaw resistance of concrete was enhanced with improved absorptivity and diffusivity whilst the freeze/thaw resistance of normal concrete was found to have the best relationship with its intrinsic permeability. The latter method is therefore proposed to be adopted to predict freeze/thaw resistance of normal concrete. Since Figg air test is an inexpensive and simple test method that measures indirectly the intrinsic permeability of concrete, it is further proposed that it could be used as a quality control tool to assess, non-destructively, the freeze/thaw durability potential of in-situ concrete.

Effect of Polymers on the Freezing and Thawing Resistance of Hardened Cement Mortar (시멘트 경화체의 동결융저항성에 미치는 Polymer의 영향)

  • 이선우;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.509-516
    • /
    • 1991
  • The effect of various polymers on the freeze-thaw resistance of hardened cement mortar was investigated. For this study, styrene butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA) were used to prepare cement mortar specimen, and then freeze-thaw experiment was carried out. By adding SBR adn EVA to the specimen, the freeze-thaw resistance of specimens was improved, but when PVA was added to the specimen, its freeze-thaw resistance was lowered. Particularly, the specimens which were added 5, 10% of SBR and 5% of EVA showed excellent freeze-thaw resistance in the salt environment.

  • PDF

Comparative Analysis of the Physicochemical Properties of Sun-dried and Natural Cyclic Freeze-Thaw Dried Alaska Pollack

  • Kim, Jong-Hwan;Choi, Hee-Sun;Lee, Sang-Hyun;Hong, Jeong-Hwa;Kim, Jae-Cherl
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.520-525
    • /
    • 2007
  • The physicochemical properties of sun-dried and cyclic freeze-thaw dried Alaska pollack were analyzed to compare the 2 drying processes. The moisture content and water activity of sun-dried Alaska pollack were higher than cyclic freeze-thaw dried and 1 year-aged cyclic freeze-thaw dried Alaska pollack (hwangtae). The relatively low temperatures used in cyclic freeze-thaw drying retards lipid oxidation compared to sun drying based on the acid and peroxide values, and the levels of thiobarbituric acid-reactive substances (TBARS) in the dried fish. The water holding capacity of cyclic freeze-thaw dried Alaska pollack aged for 1 year (hwangtae) under ambient conditions at the drying location was higher than that of sun-dried Alaska pollack. The swelling of myofibrilar filaments during cyclic freeze-thaw drying may be responsible for the softening of the dried muscle protein. Aging the cyclic freeze-thaw dried Alaska pollack for 1 year contributed to an increased yellowish color of the hwangtae.

Effect of Repeated Freeze-Thaw Cycles on Beef Quality and Safety

  • Rahman, Mohammad Hafizur;Hossain, Mohammad Mujaffar;Rahman, Syed Mohammad Ehsanur;Hashem, Mohammad Abul;Oh, Deog-Hwan
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.482-495
    • /
    • 2014
  • The objectives of this study were to know the effect of repeated freeze-thaw cycles of beef on the sensory, physicochemical quality and microbiological assessment. The effects of three successive freeze-thaw cycles on beef forelimb were investigated comparing with unfrozen fresh beef for 75 d by keeping at $-20{\pm}1^{\circ}C$. The freeze-thaw cycles were subjected to three thawing methods and carried out to know the best one. As the number of freeze-thaw cycles increased color and odor declined significantly before cook within the cycles and tenderness, overall acceptability also declined among the cycles after cook by thawing methods. The thawing loss increased and dripping loss decreased significantly (p<0.05). Water holding capacity (WHC) increased (p<0.05) until two cycles and then decreased. Cooking loss increased in cycle 1 and 3, but decreased in cycle 2. pH decreased significantly (p<0.05) among the cycles. Moreover, drip loss, cooking loss and WHC were affected (p<0.05) by thawing methods within the cycles. 2-Thiobarbituric acid (TBARS) value increased (p<0.05) gradually within the cycles and among the cycles by thawing methods. Total viable bacteria, total coliform and total yeast-mould count decreased significantly (p<0.05) within and among the cycles in comparison to the initial count in repeated freeze-thaw cycles. As a result, repeated freeze-thaw cycles affected the sensory, physicochemical and microbiological quality of beef, causing the deterioration of beef quality, but improved the microbiological quality. Although repeated freeze-thaw cycles did not affect much on beef quality and safety but it may be concluded that repeated freeze and thaw should be minimized in terms of beef color for commercial value and WHC and tenderness/juiciness for eating quality.

Evaluation of Wheat Gluten and Modified Starches for Their Texture-modifying and Freeze -thaw Stabilizing Effects on Surimi Based-products

  • Chung, Kang-Hyun;Lee, Chong-Min
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.190-195
    • /
    • 1996
  • Texture-modifying and freeze-thaw stabilizing effects of different wheat gluten and modified starches on surimi based-product were evaluated. The different incorporation manners of wheat gluten and modified wheat starch in surimi gel were also examined to evaluate their effects of textural properties on surimi gel. The addition of wheat gluten reduced the gel strength of surimi, but after freeze-thaw cycle it significantly improved freeze-thaw stability by reducing freexe-thaw expressible moisture and also by preventing rubbery texture development, Gluten-1 incorporated surimi gel showed higher functionality in forming cohesive gel determined by compressive and penetration force as wall as expressible moisture after freeze-thaw cycle. Surimi gel containing modified wheat starch showed better freeze-thaw stability that of modified potato starch. When a preblended mixture of wheat gluten and starch are incorporated into surimi gel, it made gel texture significantly softer as so in high sensory score. The compertition for moisture between gluten and starch is a main reason to show different way of textural modification.

  • PDF

Compressive behavior of concrete under high strain rates after freeze-thaw cycles

  • Chen, Xudong;Chen, Chen;Liu, Zhiheng;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2018
  • The dynamic compressive behavior of concrete after freezing and thawing tests are investigated by using the split Hopkinson pressure bar (SHPB) technique. The stress-strain curves of concrete under dynamic loading are measured and analyzed. The setting numbers of freeze-thaw cycles are 0, 25, 50, and 75 cycles. Test results show that the dynamic strength decreases and peak strain increases with the increasing of freeze-thaw cycles. Based on the Weibull distribution model, statistical damage constitutive model for dynamic stress-strain response of concrete after freeze-thaw cycles was proposed. At last, the fragmentation test of concrete subjected to dynamic loading and freeze-thaw cycles is carried out using sieving statistics. The distributions of the fragment sizes are analyzed based on fractal theory. The fractal dimensions of concrete increase with the increasing of both freeze-thaw cycle and strain rate. The relations among the fractal dimension, strain rates and freeze-thawing cycles are developed.

Effect of Freezing and Thawing on the Histology and Ultrastructure of Buffalo Muscle

  • Sen, A.R.;Sharma, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1291-1295
    • /
    • 2004
  • Histology and transmission electron microscopy studies were carried out on buffalo muscles that were subjected to repeated freeze-thaw cycles at -10 and $-18^{\circ}C$. In the first freeze thaw cycle ($-10^{\circ}C$) structures of muscle showed slight change and closely resembled to those of normal muscle. There were frequent gaps in the half way across the fibres and some cracks in individual fibre were also noticed in second freeze thaw cycle. In the muscle frozen at $-18^{\circ}C$, more pronounced shrinkage with extensive damage of fibres with tearing was observed. The interfibrillar gaps were wider, shrinkage and tearing of the fibres were more distinct after second freeze-thaw cycle. After the second cycle, the interior portion showed large scale degradation of the ultrastructure. Our studies of buffalo muscle showed that under the proper condition, little structural damage takes place in the meat histology and ultrastructure under repeated freeze-thaw conditions. This study adds continued weight to the evidence that limited freeze-thaw cycles will not deteriorate the quality of meat.

The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand

  • Arasan, Seracettin;Nasirpur, Omid
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.361-375
    • /
    • 2015
  • Constructions over soft and loose soils are one of the most frequent problems in many parts of the world. Cement and cement-lime mixture have been widely used for decades to improve the strength of these soils with the deep soil mixing method. In this study, to investigate the freeze-thaw effect of sand improved by polymers (i.e., styrene-acrylic-copolymer-SACP, polyvinyl acetate-PVAc and xanthan gum) and fly ash, unconfined compression tests were performed on specimens which were exposed to freeze-thaw cycles and on specimens which were not exposed to freeze-thaw cycles. The laboratory test results concluded that the unconfined compressive strength increased with the increase of polymer ratio and curing time, whereas, the changes on unconfined compressive strength with increase of freeze-thaw cycles were insignificant. The overall evaluation of results has revealed that polymers containing fly ash is a good promise and potential as a candidate for deep soil mixing application.