• 제목/요약/키워드: Freeze/Thaw

검색결과 422건 처리시간 0.026초

Thermal Stability of Cysteine Proteinase Inhibitor of Tilapia (Oreochromis niloticus) Egg and Serum (Tilapia(Oreochromis niloticus) 난과 혈청 Cysteine Proteinase 저해제의 저온 및 열 안정성)

  • Choi, Seong-Hee;Kwon, Hyuk-Chu;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • 제10권4호
    • /
    • pp.263-269
    • /
    • 2006
  • To evaluate the potentiality of industrial use of cysteine proteinase inhibitor (cystatin) of tilapia egg and serum stability of the tilapia cystatin on low temperature storage and heat treatment was studied. When the eggs were stored at $4^{\circ}C$ for 3 days the cystatin activity was not changed much, while the supernatant of egg homogenate lost its cystatin activity significantly, remaining only about 65% of initial activity. When the eggs and serum were subjected to repeated freeze at $-20^{\circ}C$ and thaw at room temperature once a day, the egg cystatin was decreased after 5 cycles of freeze and thaw. However the serum cystatin was not changed by the 5 times repetition of freeze and thaw. More than 80% of egg cystatin activity was remained when the egg was heated at $35^{\circ}C$ for 30 min, but less than 10% was remained when heated at $50^{\circ}C$. On the other hand, the serum cystatin was very resistant to heat, remaining about 74% after heating at as high as $80^{\circ}C$ for 30 min. In summary, the egg cystatin was more stable when stored as intact form of egg rather than as supernatant of homogenate when stored at refrigeration. Egg cystatin was relatively stable against repeated freeze-thaw, and serum was found to be more stable in cysteine proteinase inhibitory activity than egg. Egg cystatin was not very resistant to heat treatment, while serum cystatin was quite resistant to high temperature heat treatment. These results suggest that tilapia egg and serum, especially the serum, would be a useful source for cysteine proteinase inhibitor in surimi production.

  • PDF

Effect of Freeze-Thaw Process on Myoglobin Oxidation of Pork Loin during Cold Storage (돈육 등심의 냉동 및 해동과정이 냉장저장동안 육색소 산화에 미치는 영향)

  • Jeong Jin-Yeon;Yang Han-Sul;Kang Geun-Ho;Lee Jeong-Ill;Park Gu-Boo;Joo Seon-Tea
    • Food Science of Animal Resources
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2006
  • To investigate the effect of ${\beta}$-hydroxyacyl CoA-dehydrogenase(HADH) activity increased by freezed and thaw process on myoglobin(Mb) oxidation without lipid oxidation during, pork loins were collected at postmortem 24 hts and sliced to steaks (3 cm thickness). Samples were packaged in a polyethylene bag and subjected to flesh group (control), one cycle fieezed and thaw group (treatment 1) and two cycles freezed and thaw group (treatment 2), respectively. Samples were measure meat color (CIE $L^*,\;a^*,\;b^*$), the contents(%) of MetMb, thiobarbituric acid reactive substance (TBARS) value and HADH(${\beta}$-hydroxyacyl CoA-dehydrogenase) activity at 0, 3, and 7 days of storage at $4^{\circ}C$. Both treatments showed significantly (p<0.05) lower $L^*$ and higher $L^*$ value compared to those of control at 7 days. On the contrary, MetMb contents(%) of treatments were significantly (p<0.05) higher than those of control during cold storage. However there were no significant (p> 0.05) differences in TBARS values between control and treatments during 7 days. There were significant (p<0.05) differences in HADH activity between control and treatments at 3 days of cold storage. Both treatments showed higher HADH activity compared to those of control. These results suggested that the freezed and thaw process could accelerate meat color deterioration, i.e. increased MetMb percentage without lipid oxidation in pork loin during cold storage. This also implied that autoxidation of Mb in freezed and thaw pork loin was influenced by enzyme-catalysed reactions in the tissue that would lead to decreased OxyMb.

The Cryoprotective Effect on Frozen-thawed Boar Semen of Egg Yolk Low Density Lipoproteins

  • Hu, Jian-hong;Li, Qing-Wang;Li, Gang;Chen, Xiao-Yu;Hai-Yang, Hai-Yang;Zhang, Shu-Shan;Wang, Li-Qiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권4호
    • /
    • pp.486-494
    • /
    • 2006
  • In order to protect the spermatozoa against cold shock, hen egg yolk is widely used as a cryoprotective agent in semen freezing extenders for domestic animals. The protective action of yolk is largely presumed to be due to low density lipoproteins (LDL). The effects of LDL on sperm quality of bull and northern pike (Esox lucius) after freezing-thawing have been reported, but no study has been made to evaluate the effect of LDL on boar sperm motility and other characteristics. The experiment was carried out to investigate the effect of LDL on the freezing of boar sperm in 0.25 ml straws. The aim was to evaluate the quality of boar spermatozoa cryopreserved in the presence of LDL. Motility of semen cryopreserved in LDL was analyzed and compared to semen cryopreserved with Tris-citric acid-glucose (TCG) and Tris-citric acid-fructose (TCF), two basic freezing extenders containing egg yolk. Similarly, acrosome and plasma membrane integrity were also evaluated and compared to semen cryopreserved with TCG and TCF. Analysis of sperm quality after freeze-thaw showed that the motility, acrosome and plasma membrane integrity were improved with LDL in the extender, as compared to the TCG and TCF. The highest post-thaw integrity of acrosome and plasma membrane and motility were obtained with 9% LDL (w/v). Consequently, the optimum LDL concentration in the extender was 9%. It is also suggested that the concentration of LDL addition is important for the effect on boar sperm protection during freezing and thawing. The percentage of motile spermatozoa was significantly higher after freezing in 9% LDL than in TCG and TCF 54.4% versus 30.4% and 30.1% (p<0.05), respectively. The integrity of acrosome and plasma membrane were also significantly higher at 70.3% and 50.5% respectively with semen frozen in 9% LDL extender compared to TCG at 37.8% and 30.3% and TCF at 36.4% and 29.9%, respectively (p<0.05),. In conclusion, we propose that extender containing LDL extracted from hen egg yolk could be used as a cryoprotective media with a better efficiency than TCG and TCF. LDL improved boar semen quality, allowing better spermatozoa motility, acrosome and plasma membrane integrity after the freeze-thaw process. Furthermore, we found out that the extender with 9% LDL concentration significantly enhanced motility, acrosome and plasma membrane integrity of boar sperm after freezing and thawing.

A Study on the Effects of Molding Pressure on the Compressive Strength and Durability of Soil-Cement Mixture (성형압력이 Soil-Cement의 강도 및 내구성에 미치는 영향에 관한 연구)

  • 서원명;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제20권1호
    • /
    • pp.4575-4591
    • /
    • 1978
  • In order to investigate the effects of grain size distribution, cement content, and molding pressure on the strength and durability of soil-cement mixtures, a laboratory test of soil cement mixtures was performed at four levels of cement content, five levels of molding pressure, and four levels of normal curing periods. The results are summarized as follows: 1. Optimum moisture contents in loam soil and maximum dry density in sand soil increased with the increase of cement content, but in others, both optimum moisture contents and maximum dry density were changed ununiformly. 2. When the specimens were molded with molding pressure, 50kg/$\textrm{cm}^2$, strength of soil cement mixture with cement content, 2 and 4 per cent, was lower than the strength of soil cement mixture without cement content by more than 40 to 50 per cent. 3. The strength of soil-cement molded with molding pressure, 100kg/$\textrm{cm}^2$, was higher than the strength of soil-cement molded with M.D.D. obtained from standard compaction test more than 40 per cent in sand loam cement and 50 per cent in loamy cement. 4. There was highly significant positive correlation among molding pressure, cement content and unconfined compressive strentgh and so the following multiple regression equations were obtained. Loam: fc=1.9693C+0.197P-0.84 Sandy loam: fc=2.9065C+0.235P-0.77 5. When the specimens were molded with molding pressure, 20 to 100kg/$\textrm{cm}^2$, the regression equation between the 28-day and 7-day strenght was obtained as follows. Loam : q28=1.1050q7+7.59(r=0.9147) Sandy loam : q28=1.3905q7+3.17 (r=0.9801) 6. At the cement contents of above 50 per cent, the weight losses by freeeze-thaw test were negligible. At the cement content of below 8 per cent the weight losses were singnificantly high under low molding pressure and remarkably decreased with the increase of molding pressure up to 80kg/$\textrm{cm}^2$. 7. Resistance to damage from water and to absorption of water were not improved by molding pressure alone, but when the soil was mixtured with cement above 6 per cent, damage seldoms occurred and absorbed less than 5 per cent of water. 8. There was highly significant inverse-corelationship between the compressive strength of soil cement mixtures and their freeze-thaw loss as well as water absorption. By the regression equation methods, the relationships between them were expessed as followed fc=-7.3206Wa+115.6(r=0.9871) log fc=-0.0174L+1.59(r=0.7709) where fc=unconfined compressive stregth after 28-days curing. kg/$\textrm{cm}^2$ Wa=water absorption, % L : freeze-thaw loss rate, %

  • PDF

An Experimental Study on the Durability of Recycled Aggregate Concrete (재생골재 콘크리트의 내구특성에 관한 실험적 연구)

  • Seo Chi-Ho;Kim Byung-Yun
    • Journal of the Korea Concrete Institute
    • /
    • 제17권3호
    • /
    • pp.385-392
    • /
    • 2005
  • The object of this study is to prove the quality and reliability of recycled aggregate concrete by finding a way to improve the durability of the material through the experiment on the accelerated carbonation, freezing and thaw, and drying shrinkage, analysing the influence on the durability to Promote more active use of recycled aggregate concrete. The result of study as follows. (1) Resistibility to the freeze and thaw of the recycled aggregate concrete showed relative dynamic modulus of elasticity over $90\%$ which is very good, and all cycles show $99.2{\~}91.0\%$ dynamic modulus of elasticity which is improved compared with the $97.5{\~}90.6\%$ relative dynamic modulus of elasticity of ordinary concrete made of broken stone. (2) Carbonated thickness of the recycled aggregate concrete and the normal concrete was similar or it appeared with the tendency which it diminishes more or less. (3) Length change rate in drying contraction of the recycled aggregate concrete made of the recycled aggregate was lower than the ordinary concrete made of the broken stone by $18.5{\~}3.9\%$ in all blending.

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • 제9권4호
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF

Physicochemical Properties of Korean Sweet Potato Starches (한국산 고구마 전분의 품종별 이화학적 성질)

  • 임승택;박지연;안영섭;신동훈
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Starch was isolated from nine Korean sweet potato varieties(Shinmi, Seangmi, Yulmi, Shinyulmi, Sunmi, Jeungmi, Mokpo 26, Mokpo 29, and Mokpo 30) and analysed in its physicochemical properties in comparison with a commercial sweet potato starch(Kumokanyu) imported from China. Protein content in the isolated starch was highest(1.1%) in Mokpo 29 and lowest(0.3%) in Kumokanyu, whereas lipid content was equally less than 0.2%. Pasting analysis by Rapid Viscoanalyser(RVA) showed that Yulmi starch had the lowest pasting temperature(70.2oC) whereas Kumokanyu did the highest one (74.3oC). Under a differential scanning calorimetry(DSC), however, Kumokanyu showed the lowest onset temperature(61.8oC) and enthalpy(42.0 J/g) for crystal melting. Shinyulmi showed the highest peak viscosity of the starch paste, but shear thinning was significant like commercial potato starch. Kumokanyu, however, displayed the least peak visicosity but good shear stability. With the starch gels prepared at 4oC, Mokpo 29 showed the highest hardness, whereas Shinyulmi did the lowest one. Against repeated freeze thawing treatments, the starch gel of Kumokanyu was most stable, and among the Korean varieties, Yulmi, Shinyulmi, Jeungmi and Mokpo 26 had good stability. According to the chain distribution analysis, Shinyulmi and Mokpo 29 consisted of larger quanitites of shorter amylopectin chains than Kumokanyu, potato and corn starches.

  • PDF

Melatonin and selenium supplementation in extenders improves the post-thaw quality parameters of rat sperm

  • Shahandeh, Erfan;Ghorbani, Mahboubeh;Mokhlesabadifarahani, Tahereh;Bardestani, Fateme
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권2호
    • /
    • pp.87-92
    • /
    • 2022
  • Objective: The aim of this study was to determine the effects of melatonin and selenium in freezing extenders on frozen-thawed rat sperm. Methods: Semen samples were collected from 20 adult male Wistar albino rats. Following dilution, the samples were divided into six groups: four cryopreserved groups with 1 mM and 0.5 mM melatonin and selenium supplements, and two fresh and cryopreserved control groups. The rapid freezing technique was used to freeze the samples. Flow cytometry was used to assess plasma membrane integrity, mitochondrial membrane potential, and DNA damage, while computer-assisted sperm analysis was used to assess motility. Results: Total motility was higher in the 1 mM melatonin supplementation group than in the cryopreserved control group (mean±standard error of the mean, 69.89±3.05 vs. 59.21±1.31; p≤0.05). The group with 1 mM selenium had the highest plasma membrane integrity (42.35%±1.01%). The cryopreserved group with 0.5 mM selenium had the highest mitochondrial membrane potential, whereas the cryopreserved control group had the lowest (45.92%±4.53% and 39.45%±3.52%, respectively). Conclusion: Cryopreservation of rat semen supplemented with 1 mM melatonin increased sperm motility after freeze-thawing, while supplementation with 0.5 mM selenium increased mitochondrial activity.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • 제15권5호
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF