• Title/Summary/Keyword: Freeform Surface

Search Result 84, Processing Time 0.028 seconds

Study of Freeform Buildings using the Digital Fabrication (비정형 건축물 구현을 위한 Digital Fabrication의 활용방법 연구 -롯데월드타워 3D 포디움 시공사례-)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Jung-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.52-53
    • /
    • 2017
  • Through the case study, we surveyed an applicability of digital fabrication in irregular-shaped building construction project. By digital fabrication, we mean is a precision manufacturing method has been used in aircraft, ship and car manufacturing industry. We collected construction-completed "LotteWorld Tower Podium" project data and analyzed its process in terms of construction quality andduration. The result shows that digital fabrication is considered a competitive technology that enabled to complete the project in seven months within 3mm surface curvature threshold. The digitalfabrication is expected to apply on a number of irregular-shaped building construction project.

  • PDF

An Evaluation Model for Analyzing the Overlay Error of Computer-generated Holograms

  • Gan, Zihao;Peng, Xiaoqiang;Hong, Huajie
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.277-285
    • /
    • 2020
  • Computer-generated holograms (CGH) are the core devices to solve the problem of freeform surface measurement. In view of the overlay error introduced in the manufacturing process of CGH, this paper proposes an evaluation model for analyzing the overlay error of CGH. The detection method of extracting CGH profile information by an ultra-depth of field micro-measurement system is presented. Furthermore, based on the detection method and technical scheme, the effect of overlay error on the wavefront accuracy of CGH can be evaluated.

Fabrication, Assembly and Alignment of the Off-axis Freeform K-DRIFT Pathfinder

  • Kim, Yunjong;Kim, Dohoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2021
  • 표준우주모형이 예측하는 천체의 성장 역사를 추적하기 위해서는 보통의 밤하늘 밝기보다 약 1000배 어두운 낮은 표면밝기(Low Surface Brightness, LSB) 우주 탐사가 필요하지만, 관측기술의 한계로 아직 LSB 우주는 거의 미지의 세계에 있다고 할 수 있다. 한국천문연구원에서는 LSB 천체 관측에 최적화된 직경 300 mm K-DRIFT Pathfinder 망원경을 개발하였다. LSB 천체는 ~28 mag/arcsec2 보다 어두운 천체로 표면밝기가 매우 낮기 때문에 망원경 내부의 미광(stray light)을 최소화하는 것이 중요하다. 이를 구현하기 위해 K-DRIFT Pathfinder 망원경에는 선형 비점수차가 제거된 비축 자유곡면 삼 반사경 형태를 적용하였다. 본 연구를 통해 가시광 영역에서 선형 비점수차가 제거된 비축 자유곡면 삼 반사 망원경의 설계, 제작 및 측정 가능성을 검증하였다. 본 발표에서는 K-DRIFT Pathfinder 망원경에 적용된 비축 자유곡면 광학면의 가공, 삼 반사 망원경의 조립 및 정렬 결과를 소개한다.

  • PDF

Development of Diaphragm-type Stylus Probe for Ultra-precision On-machine Measurement Application (초정밀 기상측정용 다이아프램 타입 접촉식 프로브의 개발)

  • Lee, Jung-Hoon;Lee, Chan-Hee;Choi, Joon-Myeong;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.845-852
    • /
    • 2012
  • The diaphragm-type stylus probe was developed for ultra-precision on-machine measurement (OMM) application. This probe is equipped with two diaphragms which are parallel and one capacitive sensor is used for detecting the vertical motion of end tip in the stylus when it is contacted to the optical freeform surface. For better performance of proposed probes, several design parameters such as axial stiffness and the lateral deformations were investigated with finite element analysis techniques. To verify the feasibility, the profiles of the master sphere ball were measured on the ultra-precision milling machine. The measurement results show that the proposed probe can calculate the radius of the circle within the accuracy of 0.1 ${\mu}m$ for the ultraprecision optical surface.

Development of New Rapid Prototyping System Performing both Deposition and Machining(I);Process and Framework (적층과 절삭을 복합적으로 수행하는 새로운 개녕의 판재 적층식 쾌속 시작 시스템의 개발(I);공정 및 기반구조)

  • Heo, Jeong-Hun;Hwang, Jae-Cheol;Lee, Geon-U;Kim, Jong-Won;Han, Dong-Cheol;Ju, Jong-Nam;Park, Jong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1958-1967
    • /
    • 2000
  • Rapid Prototyping( RP ) has been increasingly applied in the process of design and development of new products. RP can shrink the time and expense required to bring a new product from initial concept to production. However, the necessity of using RP for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy materials, and cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed in this paper. It incorporates both material deposition in layers and material removal from the outer surface of the layer to produce the required surface finish. The new hybrid-RP system can dramatically reduce the total build time and fabricate largo-sized and freeform objects because it uses very thick layers, i.e.

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

Optical Design and Tolerance Analysis for UVO-Multiband Polarizing Imager System

  • Han, Jimin;Chang, Seunghyuk;Park, Woojin;Lee, Sunwoo;Ahn, Hojae;Kim, Geon Hee;Lee, Dae-Hee;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2020
  • UVO-Multiband Polarizing Imager System (UVOMPIS) is an ultraviolet to visible light multi-wavelength polarization/imaging system for Compact Advanced Satellite. We developed Linear Astigmatism Free-Three Mirror System (LAF-TMS) D200F2 as an optical system of UVOMPIS which has an entrance pupil diameter of 200 mm, a focal ratio of 2, a field of view of 2° × 4°. LAF-TMS is a confocal off-axis reflecting telescope system that removes linear astigmatism, and its all mirrors (M1, M2, M3) are optimized with the freeform surface to reduce high-order aberrations. Through the sensitivity analysis and Monte-Carlo simulation as the tolerance analysis, we can confirm the feasibility of the system, relatively sensitive parameters (tilt, decenter, despace, surface RMS error), and considerations for optomechanical design. From the sensitivity analysis, we can discover the relatively sensitive optical alignment parameters to a single perturbation. Further more, in the monte-carlo simulation, we investigate the minimum tolerance budget satisfying the required optical performance and whether the tolerance range is satisfied within manufacturing error.

  • PDF

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

Polymer Inkjet Printing: Construction of Three-Dimensional Structures at Micro-Scale by Repeated Lamination

  • Yun, Yeon-Hee;Kim, Jae-Dong;Lee, Byung-Kook;Cho, Yong-Woo;Lee, Hee-Young
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • Solution-based, direct-write patterning by an automated, computer-controlled, inkjet technique is of particular interest in a wide variety of industrial fields. We report the construction of three-dimensional (3D), micro-patterned structures by polymer inkjet printing. A piezoelectric, drop-on-demand (DOD) inkjet printing system and a common polymer, PVA (poly(vinyl alcohol)), were explored for 3D construction. After a systematic preliminary study with different solvent systems, a mixture of water and DMSO was chosen as an appropriate solvent for PVA inks. The use of water as a single solvent resulted in frequent PVA clogging when the nozzles were undisturbed. Among the tested polymer ink compositions, the PVA inks in a water/DMSO mixture (4/1 v/v) with concentrations of 3 to 5 g/dL proved to be appropriate for piezoelectric DOD inkjet printing because they were well within the proper viscosity and surface tension range. When a dot was printed, the so-called 'coffee-ring effect' was significant, but its appearance was not prominent in line printing. The optimal polymer inkjet printing process was repeated slice after slice up to 200 times, which produced a well-defined, 3 D micro-patterned surface. The overall results implied that piezoelectric DOD polymer inkjet printing could be a powerful, solid-freeform, fabrication technology to create a controlled 3D architecture.

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.