• Title/Summary/Keyword: Freeform Fabrication

Search Result 103, Processing Time 0.042 seconds

A Development of Constant-Speed Position Controller for Solid Freeform Fabrication System (임의형상가공시스템을 위한 정속위치제어기 개발)

  • 고민국;김승우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.91-94
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in foreign some corporations including the U.S.A, have much technological problems yet and need new mode for agile prototyping. In this paper, we design algorithm that the cutting path of laser beam, on the SFFS(Solid Freeform Fabrication System), is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which was developed in this paper.

  • PDF

PC-based Controller for Industrial Solid Freeform Fabrication System (산업용 SFFS (Solid Freeform Fabrication System)을 위한 PC 기반 제어기)

  • 박남수;황면중;이두용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • This paper presents a PC-based controller of industrial SFFS(Solid Freeform Fabrication System). The SFFS has multiple sub-controllers for the building room, the powder room, the temperature, and the density of oxygen in the chambers. Hence the main PC-based controller should effectively and timely send commands to the sub-controllers, and monitor the overall SLS process. The required actuators and sensors are selected to optimize the overall performance of the SFFS.

  • PDF

Process Optimization of Industrial Solid Freeform Fabrication System (산업용 임의형상제작(Solid Freeform Fabrication)시스템의 공정변수 최적화)

  • Kwak, Sung-Jo;Lee, Doo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.602-609
    • /
    • 2008
  • This paper presents experimental optimization of process parameters for a newly developed SFF(Solid Freeform Fabrication) system. Two critical process parameters, layering thickness and curing period, which have a large effect on the quality of the product, are optimized through experiments. Specimens are produced using layering thicknesses of 60, 80, 100, 120, 140, and $160\;{\mu}m$ and curing periods of 0, 10, 20, and 30 minutes under the same processing conditions, i.e., build-room temperature, feed-room temperature, roller speed, laser power, scan speed, and scan spacing. The specimens are tested to compare and analyze performance indices such as thickness accuracy, flatness, stress-strain characteristics, and porosity. The experimental result indicates that layering thickness of $80{\sim}100\;{\mu}m$ and curing period of $20{\sim}30$ minutes are recommended for the developed industrial SFF system.

Solid freeform fabrication and its application to tissue engineering (자유 형상 제작 기술 및 이의 조직 공학 적용)

  • Kang, Hyun-Wook;Lee, Jin-Woo;Kim, Jong-Young;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1415-1418
    • /
    • 2008
  • Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, Solid freeform fabrication (SFF) technology was remarked by fabricating 3D free-form micro-structures. Among SFF technologies, we tried to fabricate scaffolds using micro-stereolithography which contain the highest resolution of all SFF technologies and precision deposition system which can use various biomaterials. And we developed the CAD/CAM system to automate the process of scaffold fabrication and fabricate the patient customized scaffolds. These results showed the unlimited possibilities of our SFF technologies in tissue engineering.

  • PDF

Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication (신속성형기술 전용 벌집구조 형상 모델링 기술 개발)

  • 지해성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

Review of Freeform Buildings using the Digital Fabrication (디지털 패브리케이션을 활용한 비정형 건축물의 시공공법 고찰)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Sung-Jin;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.175-176
    • /
    • 2015
  • Starting from Guggenheim Bilbao Museum in 1997, it has been increased steadily that complex geometry buildings using digital designs and construction process. Since 2010, the domestic Freeform design has been widely used for buildings such as Dongdaemoon Design Plaza, Seoul City Hall, Tri-Bowl, and etc. But there are many defects such as the increased cost and period of construction, and the declined quality of construction because of the lack of optimized method and engineering experiences. Therefore, this study has an effort to review case study of the recent freeform buildings and construction methods using digital fabrications. And this study proposed the improve method for the construction quality for freeform buildings.

  • PDF

A Study on Constant-Speed Position Control of Solid Freeform Fabrication System (임의형상가공시스템의 정속위치제어)

  • Jung, Yong-Rae;Ko, Min-Kook;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF

Study of Dynamic Characteristics of Stacking and Transfer System for the Solid freeform fabrication System (임의형상가공시스템의 적층 및 이송장치 동특성연구)

  • 엄태준;주영철;민상현;김승우;공용해;천인국;방재철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.246-248
    • /
    • 2002
  • This paper presents computer simulations of the stacking and transfer system for the fast freeform fabrication system. The stacking and transfer system is essential for the fast freeform fabrication system and its stable motion is very important fer the consistent stacking of the cut slices. The stacking and transfer system cane be modeled as a pneumatic system. The system consists of air compressor, the control valve, and the cylinder. The governing parameters have been changed and the simulation results are shown to predict the time response of the system. The results shows some parameters should be correctly tuned to obtain stable system response.