• Title/Summary/Keyword: Free-breathing

Search Result 81, Processing Time 0.065 seconds

The Study of Dose Variation and Change of Heart Volume Using 4D-CT in Left Breast Radiation Therapy (좌측 유방 방사선치료 시 4D-CT를 이용한 심장의 체적 및 선량변화에 대한 연구)

  • Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.

  • PDF

Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results

  • Luuk H.G.A. Hopman;Elizabeth Hillier;Yuchi Liu;Jesse Hamilton;Kady Fischer;Nicole Seiberlich;Matthias G. Friedrich
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • BACKGROUND: Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes. METHODS: We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver. RESULTS: In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed. CONCLUSIONS: cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Volumetrical changes of liver associated with breathing and its impact to normal tissue complication probability (호흡에 따른 간장용적의 변화와 정상조직손상확율에 미치는 영향에 관한 연구)

  • Cho Jung Hee;Kim Joo Ho;Lee Suk;Park Je Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Purpose: The aim of this study is to investigate geometrical and volumetrical changes of liver due to breathing and its impact to NTCP. In order to attain better treatment results it should be considered deliberately during planning session. Mehtods and Materials : Seven patients were examined in this study who have done TACE for accurate tumor margin drawing. After contrast media injection, C-T scan data were obtained in supine position during breathing free, inhalation and exhalation, respectively. For all patients C-T scan were done with same scanning parameters- 5 mm index, 5 mm thickness and pitch 1. Based on C-T data we have measured differences of each variables between breathing status such as changes of total and remained liver volumes, GTV, beam path length and superior to inferior shift. NTCP were calculated using Lyman's effective volume DVH reduction scheme and for this NTCP calculation, the V50 was computed from DVH and each m, n value were referred from Burmans data. Results : The measured total tilter volume and the remained liver volume changed between inspiration and expiration about $1.2-7.7\%(mean+2.7\%)$ and $2.5-13.23\%(mean=5.8\%)$ respectively, and these results were statistically significant(p>0.1). The GTV difference in each patient varied widely from $1.17\%\;to\;30.69\%$, but this result was not statistically significant. Depending on the breathing status, the beam path length was changed from 0.5 cm to 1.1 cm with the average of 0.7 cm, and it was statistically significant(p=0.006). The measured superior to inferior shifts were ranged from 0.5 cm to 3.74 cm. The NTCPs were changed relatively small in each patient, but the variation was large between the patients. The mean NTCP difference was $10.5\%$, with the variation ranged from $7\%\;to\;23.5\%$. Conclusion : Variations of liver volume and of beam path length were changed significantly depending on the breathing statues and the range of variation itself was very different between the patients. Since this variance could seriously affect the clinical outcomes of radiation treatments, the breathing of patients need to be accounted when a final treatment planning is derided.

  • PDF

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Performance Evaluation of the Tumor Tracking Method Using Beam on/off Interface for the Treatment of Irregular Breathing (호흡이 불규칙한 환자의 치료를 위한 Beam on/off Interface를 이용한 종양 추적 치료 방법의 성능 평가)

  • Lee, Minsik
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.343-349
    • /
    • 2018
  • Dose rate regulated tracking is known to be an efficient method which adaptively delivers tracking treatments when patient breathing is irregular. The Motion Management Interface (MMI, Varian Medical System, CA), which provides beam on/off switching during treatment is available for clinic. Study is to test if delivering the adaptive tumor tracking is feasible for irregular breathing using beam switching with MMI. 55 free breathing RPM traces acquired from lung cancer patients are used. The first day RPM traces of the patients are utilized to design preprogrammed tracking MLC patterns, of which periods are intentionally reduced by 20% in order to catch up the variation of patient breathing irregularity in the treatment day. Eligibility criteria for this technique are the variation of amplitude and period less than 20%. An algorithm which determines beam on/off every 100 ms by considering the preprogrammed (MLC) positions and current breathing positions is developed. Tracking error and delivery efficacy are calculated by simulating the beam-switching adaptive tracking from the RPM traces. Breathing patterns of 38 patients (70%) met the eligibility criteria. Tracking errors of all of the cases who meet the criteria are less than 2 mm (average 1.4 mm) and the average delivery efficacy was 71%. Those of rest of the cases are 1.9 mm and 48%. Adaptive tracking with beam switching is feasible if patient selection is based on the eligibility criteria.

Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices

  • Pengfei Peng;Xun Yue;Lu Tang;Xi Wu;Qiao Deng;Tao Wu;Lei Cai;Qi Liu;Jian Xu;Xiaoqi Huang;Yucheng Chen;Kaiyue Diao;Jiayu Sun
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1221-1231
    • /
    • 2023
  • Objective: To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. Materials and Methods: Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. Results: LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). Conclusion: Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.

How Does the Filter on the Mask Affect Your Breathing?

  • Kum, Dong-Min;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.438-443
    • /
    • 2021
  • Objective: The purpose of this study was to determine the effect of the difference in mask filters on the respiration rate of healthy people. Design: A randomized cross-over design. Methods: A total of 15 subjects were selected for this study (n=15). After filling out the Physical Activity Readiness Questionnaire, the selected participants abstained from caffeinated beverages and meals 30 minutes before and sat in a chair 10 minutes before stabilizing their breathing. Afterwards, the lung function test was performed 3 times for each mask, and the maximum value was used. The provided masks were Mask Free, Dental Mask, KF80, and KF94. Exhalation was measured for 6 seconds for each mask, and breathing was stabilized by repeating inhalation and exhalation until the next time. Results: In this study, the difference in respiratory function according to the mask type was statistically significant except for FEV1 and FVC (p<0.05). As a result of post-hoc analysis, FVC, FEV1, PEF, and FEF values were significantly lower than those of the control group not wearing a mask (p<0.05). When wearing KF94, FVC, FEV1, PEF25-25%, and FEF were significantly lower than when wearing a dental mask (p<0.05). When wearing a KF80 mask, it was significantly lower in FVC and FEV1 than when wearing a dental mask (p<0.05). In FEV1/FVC, the difference by mask type was not statistically significant (p<0.05), but it was lower than the spirometry standard of COPD patients (FEV1/FVC<0.7). Conclusions: As Now that wearing a mask is essential, it has been confirmed that the mask affects the respiratory rate.Therefore, in the case of healthy adults, it is recommended to rest after wearing a mask if attention deficit or headache occurs. People with low breathing capacity are recommended to have low-intensity activities and frequent rest periods after wearing a mask.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.