• Title/Summary/Keyword: Free-Surface Flow

Search Result 831, Processing Time 0.032 seconds

Study on the Evaluation Method for EEDI of the Small Vessel using CFD (CFD 기반 소형 선박의 EEDI 평가 방법에 관한 연구)

  • Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2019
  • This study aimed to predict the resistance and propulsion performance of a ship using computational fluid dynamics (CFD) and a database as well as establish an assessment method for the energy efficiency design index (EEDI) using the results. First, the total resistance of the studied ship is obtained using CFD. A flow analysis is conducted with the free surface and trim and sinkage using a commercial CFD code (STAR-CCM+). The effective power of the ship is assessed based on the CFD results. The quasi-propulsive efficiency is calculated from an empirical prediction equation using experimental data and similar material. Finally, a general calculation program for the EEDI is established based on the hydrodynamic results, ship information for principal particulars, conversion factor of $CO_2$ for fuels, and fuel consumption.

Computational Model for Hydrodynamic Pressure on Radial Gates during Earthquakes (레디얼 게이트에 작용하는 지진 동수압 계산 모형)

  • Phan, Hoang Nam;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.323-331
    • /
    • 2019
  • In this study, a computational model approach for the modeling of hydrodynamic pressures acting on radial gates during strong earthquakes is proposed. The use of the dynamic layering method with the Arbitrary Lagrangian Eulerian (ALE) algorithm and the SIMPLE method for simulating free reservoir surface flow in addition to moving boundary interfaces between the fluid domain and a structure due to earthquake excitation are suggested. The verification and validation of the proposed approach are realized by comparisons performed using the renowned formulation derived by the experimental results for vertical and inclined dam surfaces subjected to earthquake excitation. A parameter study for the truncated lengths of the two-dimensional fluid domain demonstrates that twice the water level leads to efficient and converged computational results. Finally, numerical simulations for large radial gates with different curvatures subjected to two strong earthquakes are successfully performed using the suggested computational model.

Numerical investigation on the effect of baffles on liquid sloshing in 3D rectangular tanks based on nonlinear boundary element method

  • Guan, Yanmin;Yang, Caihong;Chen, Ping;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.399-413
    • /
    • 2020
  • The numerical simulation of liquid sloshing in the three-dimensional tanks under horizontal excitation and roll excitation was carried out, and the inhibition effect of different baffles on the sloshing phenomenon was investigated. The numerical calculations were carried out by the nonlinear Boundary Element Method (BEM) with Green's theorem based on the potential flow, which was conducted with the governing equation corresponding to the boundaries of each region. The validity of the method was verified by comparing with experimental values and published literatures. The horizontal baffle, the vertical baffle and the T-shaped baffle in the sloshing tanks were investigated respectively, and the baffles' position, dimension and the liquid depth were provided and discussed in detail. It is drawn that the baffle shape plays a non-negligible role in the tank sloshing. The vertical baffle is a more effective way to reduce the sloshing amplitude when the tank is under a horizontal harmonic excitation while the horizontal baffle is a more effective way when the tank is under a roll excitation. The amplitude of free surface elevation at right tank wall decreases with the increasing of the horizontal baffle length and the vertical baffle height. Although the T-shaped baffle has the best suppression effect on tank sloshing under horizontal excitation, it has limited suppression effect under roll excitation and will complicate the sloshing phenomenon when changing baffle height.

Study on Plunging Wave Breaking near Ship Bow (선수 주위의 플런징 쇄파 연구)

  • Koo, Bon-Guk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.122-127
    • /
    • 2021
  • Flow features near the ship bow such as wave breaking, small scale phenomena have been studied using numerical methods. In this study, the bow shaped wedge was adopted which is from previous paper [1, 2] and the conditions of simulation were Re = 1.64 × 105) and Fr = 2.93. Star CCM+, one of the commercial CFD programs has been used for the simulations. Simulation results such as wave profiles near the ship bow, shape of plunging jet, air entrainment, and wave breaking process have been compared with previous experimental and numerical studies. Overall results showed good agreements with previous studies. Profiles of bow waves showed that overturning jet has been created and broken along the wedge. Plunging wave breaking has been observed along the wedge and four components of plunging wave breaking process were shown. It is confirmed that velocity near the overturing jet significantly increased during plunging wave breaking.

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH THREE DIFFERENT LIGHT SOURCES (광원의 유형에 따른 광중합 수복재의 중합양상)

  • Kwon, Min-Seok;Jung, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The purpose of this study was to compare the effect of exposure time on the polymerization of surface and 2 mm below the surface of light-cured restorative materials cured with three different light sources; conventional halogen light curing unit(XL 3000, 3M, U.S.A.), plasma arc light curing unit(Flipo, LOKKI, France) and light emitting diode(LED) light curing unit(Elipar Free light, 3M, U.S.A.) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with three different light sources. From the experiment, the following results were obtained. 1. In Z-100, Plasma arc light exposure time of 6 to 9 seconds and LED light exposure time of 40 to 60 seconds produced microhardness values similar to those produced with 40 second exposure to a conventional halogen light(p>0.05). 2. In Tetric Flow, Plasma arc light exposure time of 9 seconds and LED light exposure time of 40 to 60 seconds produced microhardness values similar to those produced with 40 second exposure to a conventional halogen light(p>0.05). 3. In Dyract AP, Plasma arc light exposure time of 6 to 9 seconds and LED light exposure time of 20 to 40 seconds produced microhardness values similar to those produced with 40second exposure to a conventional halogen light(p>0.05). 4. In Fuji II LC, Plasma arc light exposure time of 9 seconds and LED light exposure time of 20 to 60 seconds produced microhardness values similar to those produced with 40second exposure to a conventional halogen light(p>0.05). 5. Except Fuji II LC, microhardness was decreased from the center to the periphery in all light sources(p<0.05).

  • PDF

Intermediate and Long Term Results for Extracardiac Conduit Repair Between Right Ventricle and Pulmonary Artery in Congenital Cardiac Defect (선천성 심장기형의 우심실-폐동맥 인조혈관 연결 수술후 중장기 성적)

  • 조범구
    • Journal of Chest Surgery
    • /
    • v.28 no.6
    • /
    • pp.571-578
    • /
    • 1995
  • Rastelli operation in which right ventricle[RV and pulmonary artery[PA is connected with an artificial graft is effective in increasing the pulmonary blood flow in certain types of congenital heart disease but, in many, it requires a reoperation because of the relative stenosis of graft that develops as the patients become old. The purpose of this study is to evaluate the various factors which many influence the long term outcome of such patients following a Rastelli operation. A total of 47 patients underwent a Rastelli operation during a 15 year period between November, 1978 and October 1993. The mean follow-up period is 76.1 51.3 months.1 Among the 47 patients, a valved conduit was used in 30[63.8% , and non-valved conduit in 17[36.2% patients. In the 8 patients[17.0% who died postoperatively, a valved conduit was used in 5 [16.6% and a non-valved conduit in 3[17.6% . There was no statistical difference in mortality between the 2 groups. There was a good linear correlation between the body surface area[X and the conduit size[Y [Y=3.86X + 14.6, R=0.55, P=0.01 .2 Ten patients underwent replacement of the conduit during the follow-up period. The type of conduit used and the frequency of subsequent replacement were as follows: Ionescu-Shiley, valved-33.3%, Carpentier-Edwards, valved-30.8%, Hancock, valved-80% and non-valved conduit-9.1%. The median period free of reoperation was 110 months for the valved and 79 months for the non-valved group, there being no statistical difference between the 2 groups. 3 The patients who did not require reoperation are all doing well [New York Heart Association Functional Classification: Class I . Pressure gradient between the RV and the PA was 20 mmHg in 10 randomly selected patients who did not require reoperation and 92 9 mmHg in 10 patients who did require reoperation.4 In the 10 patients who underwent a conduit replacement procedure.5 Among patients undergoing reoperation, 2 died from endocarditis.The remaining 8 patients are doing well without limitation in physical activity at a mean follow-up period of 32.7 33.9 months [range 2 to 89 months . 6 At 5, 7, and 10 years, the reoperation-free rates among all patients were 96%, 91% and 29% and the survival rates were 82%, 82% and 71%. In conclusion, Rastelli operation is an effective procedure in ameliorating symptoms in a select group of patients with congenital heart disease. Because of the inherent nature of relative graft stenosis and degeneration, a long-term follow-up is required under the proper selection of the graft material.

  • PDF

Model of Drying Stress Distribution in Disks End-wrapped in Korean Paper and Effects of End-wrappings on Prevention of Drying Defects for Vacuum Drying of Disks (한지(韓紙) 엔드래핑처리 원판(圓板)의 감압건조응력(減壓乾燥應力) 분포모형(分布模型) 및 엔드래핑스의 건조결함(乾燥缺陷) 예방효과(豫防效果))

  • Lee, Nam-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-63
    • /
    • 1991
  • It was proved that in conventional kiln drying of disks piling position in the kiln exerted a great influence on drying rates, and the larger the variation of disk diameter, the more undulating drying rates of disks. While in vacuum drying disks there was no influence on drying rates. By the end-wrapping treatments and the radial direction of disks tangential surface stresses in the core of disks were slightly compressive in three species. In control disks the drying stresses distributed into one step-style that compressive stresses in the pith side of 6cm from pith were larger than those in the bark side, while in the disks end-wrapped with Korean paper the drying stresses distributed uniformly, because flow rates of free water in disks had no difference between heart-and sap-wood by obstruction of evaporating water from surface of disks by end-wrapping with Korean paper. And end-wrapping with Korean paper considerably restrained those. Tangential differential shrinkage stresses developed the maximum tensile stress near the bark and with approaching the pith the stresses gradually reduced and changed into compressive stresses in near the pith. At the end of vacuum drying the maximum tangential tensile stresses of disks end-wrapped with Korean paper were smaller than those of control disks, and critical moisture contents causing the V-shaped crack of disks end-wrapped with Korean paper were lower than those of control disks because of the set by obstruction of evaporating water of end-wrapping with Korean paper. In the experiment of vacuum drying stress distribution the disks end-wrapped with Korean paper or aluminum foil in three species were free from V-shaped cracks and control disks were defected very slightly by V-shaped cracks. And also disks end-wrapped with Korean paper were free from heart checks in Alnus japonica and Juglans sinensis, and heart checks were occurred very slightly in others. Especially, not to speak of disks end-wrapped with Korean paper, vacuum drying of disks end-wrapped with aluminum foil prevented effectively drying defects, moreover drying times could be shortened, that is. Ginkgo biloba, Alnus japonica, and Juglans sinensis disks could be dried from green to in-use moisture content in 110 hours, 272 hours, and 407 hours, respectively.

  • PDF

Skin-Friction Drag Reduction in Wake Region by Suction Control on Horseshoe Vortex in front of Hemisphere (반구 전방에 생성된 말굽와류 흡입제어에 의한 후류영역 마찰저항 감소에 관한 연구)

  • Koo, Bonguk;Kang, Yong-Duck
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.795-801
    • /
    • 2019
  • The aim of this study was to investigate the possibility of the skin-friction reduction by vortex control. A vortical system such as a horseshoe vortex, a hairpin vortex, and a wake region was induced around a hemisphere attached on a Perspex flat plate in the circulating water channel. Hairpin vortices were developed from the wake region and horseshoe vortices were formed by an adverse pressure gradient in front of the hemisphere. The horseshoe vortices located on the flank of the hemisphere induced a high momentum flow in the wake region by the direction of their vorticity. This process increased the frequency of the hairpin vortices as well as the frictional drag on the surface of the wake region. To reduce the skin-friction drag, suction control in front of the hemisphere was applied through a hole. Flow visualization was performed to optimize the free-stream velocity, size of the hemisphere, and size of the suction hole. Once the wall suction control mitigated the strength of the horseshoe vortex, the energy supplied to the wake region was reduced, causing the frequency of the hairpin vortex generation to decrease by 36.4 %. In addition, the change in the skin-friction drag, which was measured with a dynamometer connected to a plate in the wake region, also decreased by 2.3 %.

Preparation and Characterization of Electrospun PAN/TiO2 Fiber Mat by Electron Beam Irradiation (전자선 조사에 의한 PAN/TiO2 전기방사 나노섬유 제조 및 특성분석)

  • Kang, Phil-Hyun;Jeun, Joon-Pyo;Seo, Dong-Kwon;Kim, Hyun-Bin;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Abstract: In this study, PAN/$TiO_2$ fiber mats were fabricated from polyacrylonitrile (PAN) and titanium(IV) butoxide ($Ti(OBu)_4$) by an electrospinning method with various solution concentrations, applied voltages and solution flow rates. The fiber mats were irradiated with an electron beam to induce structural crosslinking and enhance photocatalytic activity. As a result, uniform and bead-free fibers without pits or cracks on surface were obtained at 5 wt% of $Ti(OBu)_4$ solution with 15 kV and 0.02 mL/min flow rate. The PAN/$TiO_2$ fiber mats were irradiated with an electron beam of 1.14 MeV acceleration voltage, 4 mA of current and $1{\times}10^4kGy$. Electron beam irradiation was enhanced the photocatalytic activity of PAN/$TiO_2$ nano fiber mat. The photocatalytic activity of the PAN/$TiO_2$ fiber mat was analyzed by degradation of methylene blue and volatile organic compounds.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.