• Title/Summary/Keyword: Free-Surface Flow

Search Result 834, Processing Time 0.026 seconds

Flow Characteristics of a Paraglider Canopy with Leading-edge Tubercles (선단돌기가 적용된 패러글라이더 캐노피의 유동특성 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Park, Jungmok;Song, Ginseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.106-114
    • /
    • 2021
  • In the present study, we investigate the flow characteristics of a paraglider canopy with leading-edge tubercles by performing force measurement and surface flow visualizations. The experiment is conducted at Re = 3.3×105 in a wind tunnel, where Re is the Reynolds number based on the mean chord length and the free-stream velocity. The canopy model with leading-edge tubercles has flow characteristics of a two-step stall, showing an earlier onset of the first stall than the canopy model without leading-edge tubercles. However, the main stall angle of the tubercled model is much larger than that of the canopy model without tubercles, resulting in a higher aerodynamic performance at high angles of attack. The delay in the main stall is ascribed to the suppression of separation bubble collapse around the wingtip at high angles of attack.

Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis

  • Zhong, Xia;Yang, Shaomin;Su, Xinying;Shen, Xiaoxia;Zhao, Wen;Chan, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.749-757
    • /
    • 2019
  • Nitrilase is a valuable hydrolase that catalyzes nitriles into carboxylic acid and ammonia. Its applications, however, are severely restricted by the harsh conditions of industrial reaction processes. To solve this problem, a nitrilase from Acidovorax facilis 72W was inserted into an Escherichia coli-Bacillus subtilis shuttle vector for spore surface display. Western blot, enzyme activity measurements and flow cytometric analysis results all indicated a successful spore surface display of the CotB-nit fusion protein. In addition, the optimal catalytic pH value and temperature of the displayed nitrilase were determined to be 7.0 and $50^{\circ}C$, respectively. Moreover, results of reusability tests revealed that 64% of the initial activity of the displayed nitrilase was still retained at the $10^{th}$ cycle. Furthermore, hydrolysis efficiency of upscale production of cyanocarboxylic acid was significantly higher in the displayed nitrilase-treated group than in the free group expressed by E. coli (pET-28a-nit). Generally, the display of A. facilis 72W nitrilase on the spore surface of Bacillus subtilis may be a useful method for immobilization of enzyme and consequent biocatalytic stabilization.

Numerical simulations of turbulent flow on the pool and weir type fishway and analysis of ascending possibility of fishes (계단식 어도의 난류흐름 수치해석 및 어류 소상 가능성 분석)

  • Kwon, Yong-Joon;Ryu, Yonguk;Kim, Hyung Suk
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1037-1048
    • /
    • 2023
  • Fishways are constructed to ensure the fish migration because river-crossing structures such as dams and weirs cut off the stream longitudinal connectivity and influence on aquatic ecosystems. However, the passage efficiency of fishes varies depending on flow characteristics in the fishway and fish species. In this study, three-dimensional numerical simulations are carried out using a RANS model and the volume of fluid method for resolving free surface fluctuations to calculate the turbulent flow in the pool and weir type fishway. The Flow velocity and turbulent kinetic energy in the pool of fishway are analyzed according to variation of the upstream water level and the length of pool. The present numerical simulations reasonably well reproduce the stream flow and plunging flow characteristics in the pool. The simulation results show that the stream flow changes to the plunging flow as the length of the pool increases. When the upstream level increases, the stream flow becomes more evident. Key parameters related to the fish migration within the fishway such as the flow velocity and the turbulent kinetic energy are examined to assess the ascending possibility of fishes.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Numerical Solutions of Third-Order Boundary Value Problems associated with Draining and Coating Flows

  • Ahmed, Jishan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.651-665
    • /
    • 2017
  • Some computational fluid dynamics problems concerning the thin films flow of viscous fluid with a free surface and draining or coating fluid-flow problems can be delineated by third-order ordinary differential equations. In this paper, the aim is to introduce the numerical solutions of the boundary value problems of such equations by variational iteration method. In this paper, it is shown that the third-order boundary value problems can be written as a system of integral equations, which can be solved by using the variational iteration method. These solutions are gleaned in terms of convergent series. Numerical examples are given to depict the method and their convergence.

Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow (수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정)

  • 이강용;설창원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.201-208
    • /
    • 1991
  • In case that an interface crack exists in an infinite two-dimensional elastic bimaterial, the crack surface is insulated under traction free and the uniform heat flow vertical to the crack from infinite boundary is given. Temperature and stress potentials are obtained by using complex variable approach to solve Hilbert problems. The results are used to obtain thermal stress intensity factors. Only mode I thermal stress intensity factor occurs in case of the homogeneous material. Otherwise, mode I and II thermal stress intensity factor is much smaller than one of mode II.

Application of Superfluid Shock Tube Facility to experiment of High Reynolds number flow (초유동 충격파관 장치의 고레이놀즈수 유동실험에의 응용)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.27-30
    • /
    • 2002
  • The particle velocity in superfluid helium (He II) induced by a gas dynamic shock wave impingement onto He II free surface were studied experimentally by using Schlieren visualization method with an ultra-high speed video camera. It is found form visualization results that a dark zone in the immediate vicinity of the vapor-He II interface region is formed because of the high compressibility of He II and is developed toward bulk He II with the flowing-down speed of the vapor-He II interface. The mass velocity behind a transmitted compression shock wave that is equal to the contraction speed of He II amounts to 10 m/sec, the Reynolds number of which reaches $10^{7}$. This fact suggests that the superfluid shock tube facility can be applied to an experimental facility for high Reynols number flow as an alternative to the superfluid wind tunnel.

  • PDF

FINITE ELEMENT ANALYSIS OF LEVEL SET FORMULATION (유한요소법을 이용한 level set 공식화의 해석)

  • Choi, H.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.223-227
    • /
    • 2009
  • In the present study, a least square weighted residual method and Taylor-Galerkin method were formulated and tested for the discretization of the two hyperbolic type equations of level set method; advection and reinitialization equations. The two approaches were compared by solving a time reversed vortex flow and three-dimensional broken dam flow by employing a four-step splitting finite element method for the solution of the incompressible Navier-Stokes equations. From the numerical experiments, it was shown that the least square method is more accurate and conservative than Taylor-Galerkin method and both methods are approximately first order accurate when both advection and reinitialization phase are involved in the evolution of free surface.

  • PDF

Waveload Analysis for Heeled Barges with Flooded Compartments (손상침수로 자세변화된 바지형 선박의 파랑하중해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.379-387
    • /
    • 2005
  • A ship may suffer sinkage and heel due to flood in a compartment caused by damage on a deck. The motion and waveloads of the heeled ship floating in waves have been analyzed by making use of a three dimensional potential theory taking account of the hydrodynamic pressure in the flooded compartments. The shear forces and bending moments due to radiation-diffraction waves have been calculated by the direct integration of the 3-d hydrodynamic pressure on the outer and inner hulls of floating barges. The motion responses and the relative flow rate across the mean free surface of the water in the flooded compartments are also presented.