• Title/Summary/Keyword: Free tissue flap

Search Result 502, Processing Time 0.016 seconds

Treatment of Combat-related Gunshot and Explosive Injuries to the Extremities (전투 상황에서 발생한 사지 총상 및 폭발창의 치료)

  • Lee, Jung Eun;Lee, Young Ho;Baek, Goo Hyun;Lee, Kyung-Hag;Cho, Young Jae;Kim, Yeong Cheol;Suh, Gil Joon
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.111-124
    • /
    • 2013
  • Purpose: We should prepare proper medical service for disaster control as South Korea is not free from terrorism and war, as we experienced through the two naval battles of the Yeonpyeong, one in 1999 and the other in 2002, the sinking of Cheonan in 2010, and the attack against the border island of Yeonpyeong in 2010. Moreover, North Korea's increasingly bellicose rhetoric and mounting military threats against the world demand instant action to address the issue. The aim of this article is to describe our experience with three patients with combat-related gunshot and explosive injuries to their extremities and to establish useful methods for the management of patients with combat-related injuries. Methods: Three personnel who had been injured by gunshot or explosion during either the second naval battle of the Yeonpyeong in 2002 or the attack against the border island of Yeonpyeong in 2010 were included in our retrospective analysis. There were one case of gunshot injury and two cases of explosive injuries to the extremities, and the injured regions were the left hand, the right foot, and the right humerus. In one case, the patient had accompanying abdominal injuries, and his vital signs were unstable. He recovered after early initial management and appropriate emergency surgery. Results: All patients underwent emergent surgical debridement and temporary fixation surgery in the same military hospital immediately after their evacuations from the combat area. After that, continuous administration of antibiotics and wound care were performed, and definite reconstructions were carried out in a delayed manner. In the two cases in which flap operations for soft tissue coverage were required, one operation was performed 5 weeks after the injury, and the other operation was performed 7 weeks after the injury. Definite procedures for osteosynthesis were performed at 3 months in all cases. Complete union and adequate functional recovery were achieved in all cases. Conclusion: The patient should be stabilized and any life-threatening injuries must first be evaluated and treated with damage control surgery. Staged treatment and strict adherence to traditional principles for open fractures are recommended for combat-related gunshot and explosive injuries to the extremities.

STUDY OF RAT EPIGASTRIC VESSELS ACCORDING TO THE FREEZING TIME : HISTOLOGIC, HISTOMORPHOMETRIC, IMMUNOHISTOCHEMICAL & SCANNING ELECTRON MICROSCOPIC STUDY (백서 상복부 혈관의 동결시간에 따른 변화에 대한 연구)

  • Kim, Woo-Chan;Lee, Chong-Heon;Kim, Kyung-Wook;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.89-109
    • /
    • 1999
  • Vascular spasm which has been reported to occur in 25% of clinical cases continues to be a problem in microvascular surgery; When prolonged and not corrected, it can lead to low flow, thrombosis, and replant or free flap failure. Ischemia, intimal damage, acidosis and hypovolemia have been implicated as contributors to the vascular spasm. Although much work has been done on the etiology and prevention of vasospasm, a spasmolytic agent capable of firmly protecting against or reversing vasospasm has not been found. Therefore vascular freezing was introduced as a new safe method that immediately and permanently relieves the vasospasm and can be applied to microsurgical transfers. Cryosurgery can be defined as the deliberate destruction of diseased tissue or relief the vascular spasm in microvascular surgery by freezing in a controlled manner. 96 Sprague Dawley rats each weighing within 250g were used and divided into 2 group, experimental 1 and 2 group. In the experimental 1 group, right epigastric vessels (artery and vein) were freezed with a cryoprobe using $N_2O$ gas for 1 min. In the experimental 2 group, after freezing for 1 min, thawing for 30 secs and repeat freezing for 30 secs. Left side was chosen as control group in both group. We sacrified the experimental animals by 1 day, 3 days, 1 week, 2 weeks, 4 weeks & 5 months and observed the sequential change that occur during regeneration of epigastric vessels using a histologic, histomorphometric, immunohistochemical and SEM study after the vascular freezing. The results were as follows1. In epigastric arteries, internal diameters had statistically significant enlargement in 1 day, 3 days of Exp-1 group and 1 day, 3 days, 1 week & 2 weeks of Exp-2 group. Wall thickness had statistically significant thinning in 2 weeks of Exp-2 group. 2. In epigastric veins, internal diameters had enlargement of statistical significance in 1 day of Exp-1 and Exp-2 group. 3. The positive PCNA reactions in smooth muscle appeared in 1 week and increased until 2 weeks, decreased in 4 weeks. There was no statistical significance between Exp-1 and Exp-2 group. 4. The positive ${\alpha}$-SMA reaction in smooth muscles showed weak responses until 1 week and slowly increased in 2 weeks and showed almost control level in 4 weeks. 5. The positive S-100 reactions in the perivascular nerve bundles showed markedly decrease in 1 day, 3 days and increased after 1 week and showed almost control level in 4 weeks. Exp-1 group had stronger response than Exp-2 group. 6. In SEM, we observed defoliation of endothelial cell and flattening of vessel wall. Exp-2 group is more destroyed and healing was slower than Exp-1 group. To sum up, relief of vasospasm (vasodilatation) by freezing with cryoprobe was originated from the damage of smooth muscle layer and perivascular nerve bundle and the enlargement of internal diameter in vessels was similar to expeimental groups, but Exp-2 group had slower healing course and therefore vessel freezing in microsurgery can be clinically used, but repeat freezing time needs to be studied further.

  • PDF