• Title/Summary/Keyword: Free rolling test

Search Result 22, Processing Time 0.016 seconds

Effect of Effective Grain Size on Charpy Impact Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 샤르피 충격 특성에 미치는 유효결정립도 영향)

  • Shin, Sang Yong;Han, Seung Youb;Hwang, Byoungchul;Lee, Chang Gil;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.617-626
    • /
    • 2008
  • This study is concerned with the effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels. Six kinds of steels were fabricated by varying alloying elements and hot-rolling conditions, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of bainitic ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their higher volume fraction of granular bainite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in the overall effective grain size due to the presence of bainitic ferrite having smaller effective grain size.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.