• Title/Summary/Keyword: Free coupling matrix

Search Result 24, Processing Time 0.021 seconds

Micro-shear bond strengths of resin-matrix ceramics subjected to different surface conditioning strategies with or without coupling agent application

  • Gunal-Abduljalil, Burcu;Onoral, Ozay;Ongun, Salim
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.180-190
    • /
    • 2021
  • Purpose. This study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs). Materials and Methods. GC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope. Results. RMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05). Conclusion. MSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.

A 3 V 12b 100 MS/s CMOS D/A Converter for High-Speed Communication Systems

  • Kim, Min-Jung;Bae, Hyuen-Hee;Yoon, Jin-Sik;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.211-216
    • /
    • 2003
  • This work describes a 3 V 12b 100 MS/s CMOS digital-to-analog converter (DAC) for high-speed communication system applications. The proposed DAC is composed of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs, trading-off linearity, power consumption, chip area, and glitch energy with this process. The low-glitch switch driving circuits are employed to improve linearity and dynamic performance. Current sources of the DAC are laid out separately from the current-cell switch matrix core block to reduce transient noise coupling. The prototype DAC is implemented in a 0.35 um n-well single-poly quad-metal CMOS technology and the measured DNL and INL are within ${\pm}0.75$ LSB and ${\pm}1.73$ LSB at 12b, respectively. The spurious-free dynamic range (SFDR) is 64 dB at 100 MS/s with a 10 MHz input sinewave. The DAC dissipates 91 mW at 3 V and occupies the active die area of $2.2{\;}mm{\;}{\times}{\;}2.0{\;}mm$

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

Peptide C-terminal Sequence Analysis by MALDI-TOF MS Utilizing EDC Coupling with Br Signature

  • Shin, Man-Sup;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1183-1186
    • /
    • 2011
  • The unique Br signature was utilized for C-terminal amino acid sequencing of model peptides. C-terminal carboxyl group was selectively derivatized in peptides, containing side chain carboxyl group, using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and Br was introduced using 4-bromophenylhydrazine hydrochloride (BPH) in a one pot reaction. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) tandem mass spectra were obtained carrying the Br signature in the y-series ions. The Br signature facilitated C-terminal sequencing and discrimination of C-terminal carboxyl groups in the free acid and amide forms.

Free vibration analysis of multiple open-edge cracked beams by component mode synthesis

  • Kisa, M.;Brandon, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.81-92
    • /
    • 2000
  • This study is an investigation of the effect of cracks on the dynamical characteristics of a cantilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been identified for several crack depths and locations. In the study the finite element method and component mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking into account the interaction forces. Each component is modelled by cantilever beam finite elements with two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to multiple cracks may interact to make detection more difficult than for isolated cracks.

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (任意의 境界條件을 갖는 鐵筋콘크리트 扇形板의 解析(II) - 第 2報 鐵筋比 및 邊長比의 影響 -)

  • Jo, Jin-Gu
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • This paper aims at investigating the effect of steel ratio and the magnitude of edge-ratio on the mechanical characteristics of reinforced concrete ring sector plate. The influence of steel bars was taken into account by coupling stiffness matrix of the steel bar element with that of the concrete plate element without dealing with separate element of steel bar and by establishing the composite stiffness matrix, which leads to the desirable result which does not increase th number of element could be obtained. Through case studies with 6 cases various steel ratios in ring sector plate supported at four edges and 4 cases with different open angles, the influence of the steel ratio was examined. A numerical analysis to find out the effect of the steel ratio d ue to above mentioned cases was carried out by 4 boundary conditions ; all edges clamped (B.C-1), all edges simply supported (B.C-2), curvilinear two edges clamped and other edges free (B.C-3) and curvilinear two edges simply supported and other edges free(B.C-4). The main results obtained are summarized as follows : 1. The effect of steel ratio on the magnitude of lateral deflection and x-directional bending moment at the center of sector plate and the midpoint of outer and inner curvilinear edges is almost the same up to $30^{\circ}$ of open angle. Beyond $30^{\circ}$ of the angle, the larger the angle, the greater the effect of ratio. 2. In design works using balanced steel ratio, the effect of steel bar can be ignored. But for larger open angles, especially greater than $90^{\circ}$, it proves desirable to consider the effect of steel bar. 3. The effect of the arc length of center circle/straight edge on lateral deflection and bending moment is remarkable in B.C-2. For larger open angle, the effect is also noted except for B.C-3 which turn out hardly affected. 4. The effect of the radius of curvature/straight side length on lateral deflection and x-directional bending moment is noted in B.C-2. As open angle increases, B.C-1 and B.C-3 almost agree and B.C-2 approaches B.C-4.

  • PDF