• Title/Summary/Keyword: Free cooling

Search Result 264, Processing Time 0.027 seconds

Effects of Design Parameters on Performance of the Stirling Refrigerator

  • Hong, Yon-Ju;Park, Seong-Je;Kim, Hyo-Bong;Park, Young-Don
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.35-39
    • /
    • 2004
  • The split-type free displacer Stirling refrigerators have been widely used for the cooling of infrared sensors and HTS filters. The thermodynamic and electric performance of the Stirling refrigerator is depending on the design and operating parameters. In the Stirling refrigerator with a free displacer, the refrigeration power is a function of the pressure wave in the expansion space, dynamics of a displacer, driving frequency, and etc.. In this study, the analysis of the small Stirling refrigerator was performed to investigate the effects of design parameters on the cooling capacity. The results show the effects of charging pressure, driving frequency, cold end temperature, natural frequency of a displacer and volume of expansion space on the performance of the Stirling refrigerator.

A Performance test of Stirling Cryocooler by Frequency Characteristics (스터링 냉동기의 주파수 특성에 의한 성능평가에 관한 연구)

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Go, Deuk-Yong;Go, Gun-Seop;Kim, Jong-Hak
    • 연구논문집
    • /
    • s.30
    • /
    • pp.25-32
    • /
    • 2000
  • A free piston and free displacer(FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery & Materials). A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. The FPFD Stirling cryocooler employs 1) the Stirling cycle for refrigeration, 2) linear for driving the cryocooler, 3) spring and gas support systems, and 4) fine gap for clearance seals. It is the most suitable design for a mechanical cryocooler utilized in night vision environment. In order to get optimum operating frequency, natural frequency of piston and displacer, optimum phase angle between piston and displacer, cooling capacity, performance tests of the Stirling cryocooler by the frequency characteristics were performed.

  • PDF

The performance evaluation of Stirling cryocooler for thermal imaging system (IV) : Vibration, Noise, Leak test (열상장비용 스터링 극저온 냉동기 특성평가 (IV) : 진동, 소음, 누설시험)

  • 박성제;홍용주;김효봉;김양훈;최상규;나종문
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • This paper presents the results of a series of performance tests for the Stilting cryocooler. A free piston and free displacer(FPFD) Stilting cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM. Our coolers are specifically designed to work in the thermal imaging device and to meet requirements such as cooling capacity, COP and high reliability. In this work, Stilting cryocooler is designed, manufactured and fabricated, and performance characteristics for the vibration, acoustic noise, EMI and leak rate are evaluated. Vibration outputs are measured to 20KHz for compressor and expander, respectively. And, the objective of noise test is a noise level, less than 30㏈ at 5 m. EMI tests are carried out according to the standard MIL-STD-461C tests RE01 and RE02. Leak test for the Stilting cryocooler is performed by bombing method.

  • PDF

The Modeling of Temperature Changes of Acetylene Clusters formed in Free Jet Expansion (자유팽창으로 생성된 아세틸렌 Cluster의 온도변화에 관한 모델링)

  • Lee Kyung Hee;Kim Hong Rak;Kim Cheol Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.41-46
    • /
    • 2003
  • The Phase and temperature changes of large clusters formed in a free jet expansion of acetylene in 14atm and 233K has been studied. The cluster has been treated as a sphere composed of many shells. A mean diameter of 4.88 microns was obtained by modeling the experimental cooling curve of clusters based on evaporation and heat conduction theory.

  • PDF

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

Optimal Water-cooling Tube Design for both Defect Free Process Operation and Energy Minimization in Czochralski Process (무결정결함영역을 유지하면서 에너지를 절감하는 초크랄스키 실리콘 단결정 성장로 수냉관 최적 설계)

  • Chae, Kang Ho;Cho, Na Yeong;Cho, Min Je;Jung, Hyeon Jun;Jung, Jae Hak;Sung, Su Whan;Yook, Young Jin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.49-55
    • /
    • 2018
  • Recently solar cell industry needs the optimal design of Czochralski process for low cost high quality silicon mono crystalline ingot. Because market needs both high efficient solar cell and similar cost with multi-crystalline Si ingot. For cost reduction in Czochralski process, first of all energy reduction should be completed because Czochralski process is high energy consumption process. For this purpose we studied optimal water-cooling tube design and simultaneously we also check the quality of ingot with Von mises stress and V(pull speed of ingot)/G(temperature gradient to the crystallization) values. At this research we used $CG-Sim^{(R)}$ S/W package and finally we got improved water-cooling tube design than normally used process in present industry. The optimal water-cooling tube length should be 200mm. The result will be adopted at real industry.

Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface (자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구)

  • Seo, Hyeong-Joon;Kuk, Keon;Lee, Joon-Sik;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

Analysis of Phase Change Materials for Production of Changable Mold for Free-form Concrete Segment (FCS 가변형 몰드 생산을 위한 PCM 분석)

  • Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.150-151
    • /
    • 2014
  • A mold of free-form concrete segment can be used only one time. Thus, the construction duration and cost are increased. The materials of the mold such as wood and metal have limitations due to the implementation and reuse. The review of the material of the mold for free-form concrete segment is needed to reduce duration and production cost. Phase change material can be used both to implement free-shape by heating and to produce mold after cooling. After using Phase change material can be re-used to mold by heating. The scope of this study is many kind of phase change materials for molding. The aim of this study is to analyze the phase change materials for production of changable mold for free-form concrete segment. In this study, the paraffin wax that is melted at 64℃ was selected by considering both the energy efficiency and the weather of Korea.

  • PDF

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection (사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF