• Title/Summary/Keyword: Free Wake Method

Search Result 96, Processing Time 0.028 seconds

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (II) -A Phase-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(II) -위상평균된 유동특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.786-798
    • /
    • 2001
  • This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further down stream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall.

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

A Study on the Turbulent Flow Characteristics in the Wake of Transom Sterns using PIV Method (동일입자추적기법을 이용한 트랜섬선미 후류 난류유동특성에 관한 연구)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.352-359
    • /
    • 2012
  • An experiment was carried out to figure out the turbulence flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at Re= $3.5{\times}10^3$, Re= $7.0{\times}10^3$. The angles of transom stern are $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively. The depth of wetted surface is 40mm from free surface. Strong turbulence intensity appears at the interaction between the flow separation of the bottom of a model and the free surface. This study provides statistic flow information such as turbulence intensity, Reynolds stress and turbulence kinetic energy. Model C type (Raked transom) has low Reynolds stress and turbulence kinetic energy.

Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method (비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산)

  • Lee, Tae-Seung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1039-1048
    • /
    • 2008
  • new computational procedure for the Non-Linear Vortex Lattice Method (NLVLM) is suggested in this work. Conventional procedures suggested so far usually involves inner iteration loop to update free vortex shape and an under-relaxation based iteration loop to determine the free vortex shape. In this present work, we suggest a new formula based on quasi-steady concept to fix free vortex shape which eliminates the need for inner iteration loop. Further, the ensemble averaging of the induced velocities for a given free vortex segment evaluated at each iteration significantly improves the convergence property of the algorithm without resorting to the under-relaxation technique. Numerical experiments over several low aspect ratio wings are carried out to obtain optimal empirical parameters such as the length of the free vortex segment, the vortex core radius, and the rolled-up wake length.

Circadian rhythms in subjective activation, mood, and performance efficiency (주관적 각성정도, 기분, 수행능력의 일중변화)

  • Yoon, In-Young
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.12-17
    • /
    • 1998
  • Circadian rhythms in subjective alertness, mood, and performance can be classified as psychological rhythm, compared with physiological rhythm such as body temperature and hormonal change. While in normal condition entrained by 24hr zeitgeber, subjective alertness would reach its maximum value around midday, subjective alertness would parallel body temperature rhythm with its peak at evening in non-entrained, free-running state. With desynchronization technique, subjective alertness rhythm is thought to be controlled by both temperature and sleep-wake rhythm oscillator. Circadian performance rhythms depend on the kind of task tested. It shows parallelism with body temperature rhythm when subjects are tested with simple, repetitive task. But when tested with tasks requiring complex verbal reasoning or immediate memory, subjects would perform them best at early morning, with performance decreasing as time of day advances. The desynchronization technique shows that circadian performance rhythm of simple, repetitive task is dependent on temperature oscillator but circadian performance rhythm of complex verbal reasoning is influenced by both temperature and sleep-wake rhythm oscillator or another independent oscillator. It would be worthwhile to compare psychological rhythm with hormonal change such as cortisol and melatonin. And more simple and time-saving method than desynchronization technique may facilitate the study of the mechanism underlying psychological rhythm.

  • PDF

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

Laminar Flow Structures Near a Circular Cylinder in between a Free-Surface and a Moving Wall (자유수면과 움직이는 벽면 사이에 놓인 원형 실린더 주위의 층류 유동구조)

  • Seo, Jang-Hoon;Jung, Jae-Hwan;Yoon, Hyun-Sik;Park, Dong-Woo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2012
  • The present study numerically investigates the interaction between a free-surface and flow around a circular cylinder over a moving wall. In order to simulate the flow past the circular cylinder over a moving wall near a free-surface, this study has adopted the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. Numerical simulation is performed for a Reynolds numbers of 100 in the range of $0.25{\leq}g/D{\leq}2.00$ and $0.5{\leq}h/D{\leq}2.00$, where g/D and h/D are the gaps between the cylinder and a moving wall and the cylinder and a free-surface normalized by cylinder diameter D, respectively. According to g/D and h/D, the vortex structures have been classified into three patterns of the two-row, one-row, steady elongation. In general, both of g/D and h/D have the large values which mean the cylinder is far away from the wall and the free-surface, two-row vortex structure forms in the wake. When g/D decreases, the two-row vortex structure gradually transfers into the one-row vortex structure. When the g/D reveals the critical value below which the flow becomes steady state, resulting in the steady elongation vortex.

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.