• Title/Summary/Keyword: Free Space Transmission

Search Result 81, Processing Time 0.034 seconds

New Density-Independent Model far Microwave Measurement of Grain Moisture Content (마이크로파 곡물함수율 측정을 위한 새로운 밀도보정방법)

  • 김종헌;김기복;노상하
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.229-232
    • /
    • 1997
  • A free space transmission method using standard gain horn antennas in the frequency range from 9.0 to 10.5GHz is applied to determine the dielectric properties of grain such as rough rice, brown rife and barley. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The effect of density fluctuation, which is an important parameter governing the dielectric properties of grain, on the dielectric constant and loss factor is presented. A new density-independent model in terms of measured attenuation and moisture density is proposed for reducing the effects of density fluctuation on the moisture content measurement.

  • PDF

Measurement of Dielectric Properties of Bio-resources using Microwave Free-space Transmission Technique (마이크로파 자유공간전송기술을 이용한 생물자원의 유전율 측정)

  • 김기복
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.424-431
    • /
    • 2002
  • 마이크로파 주파수는 일반적으로 1㎓-30㎓ 정도로서 주파수가 매우 높기 때문에 도체뿐만 아니라 절연체와 공기 중에서도 전류가 흐르는 성질을 갖는다. 자유공간에서의 마이크로파를 전자파라고도 하며 그 속도는 빛의 속도와 동일하며 자유공간에서 1cm-30cm 파장 범위를 가지므로 센티파라고도 한다. 전자방사(electromagnetic radiation)은 공간을 통하여 시간에 따라 변하는 전자계(electric and magnetic field)에 의한 에너지의 전파(propagation)이며 파동이론과 (wave theory)와 미립자이론(corpuscular theory)에 의해 해석될 수 있다. 전자파 이론(electromagnetic wave theory)의 기초는 1864년 Maxwell이 전자기 현상에 관하여 지배방정식을 수립함으로써 정립되었으며 1888년 Hertz에 의해 마이크로파의 존재가 실험적으로 증명되었다. 이후 마이크로파 기술은 2 차 세계대전을 거치면서 크게 발전하였으며 초기의 레이더 및 통신 등과 같은 군용 기술에서 마이크로파 건조 및 센싱과 같은 산업응용 기술로 발전하게 되었다. 특히 마이크로파 센서기술 및 가열기술은 농업 및 식품분야에 응용되어 마이크로파 응용제품을 선보이게 되었다. (중략)

  • PDF

New Density-Independent Model for Measurement of Grain Moisture Content using Microwave Techniques

  • Kim, Jong-Heon;Kim, Ki-Bok;Noh, Sang-Ha
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.72-78
    • /
    • 1997
  • A free space transmission method using standard gain horn antennas in the frequency range from 9.0 to 10.5GHz is applied to determine the dielectric properties of grain such as rough rice ,brown rice and barley. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The moisture content of grain varied from 11 to 25% based on this wetted condition. The measured values of dielectric constants as a function of moisture density are compared with values of those obtained using he predicted model for estimating dielectric constants of grain. The effect of density fluctuation, high is an important parameter governing the dielectric properties of grain, on the dielectric constant and loss factor is presented. A new density-independent model in terms of measured attenuation an moisture density is proposed of reducing the effects of density fluctuation on the moisture content measurement.

  • PDF

Analysis of Wireless Power Transfer Using Metamaterial Slabs Made of Ring Resonators at 13.56MHz

  • Oh, TaekKyu;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.259-262
    • /
    • 2013
  • This paper analyzes the effects of metamaterial slabs with negative permeability when applied to a two-loop wireless power transmission (WPT) system, both in theory and electromagnetic (EM) simulations. The analysis of magnetic flux focusing provided here assumes quasi-magnetostatics or magnetostatics. The slab structures with negative permeability have been realized using the periodically arrayed ring resonators (RRs) at 13.36MHz. Some examples with ideal lossless slabs of -1, -2, and -3 showed a great enhancement of WPT efficiencies when compared with the free space cases. However, practical lossy slabs made of planar copper RRs did not show significant enhancement of WPT efficiencies due to the relatively high losses in the ring resonator (or in the slab consisting of RRs) near the resonant frequency.

Numerical Study on the Link Range of the IM/DD Wireless Optical Communication at 830[nm] Optical Wavelength using Galilean Optics (갈릴리안 광학계를 사용한 IM/DD 광무선통신 시스템에서 830[nm] 광파장에 대한 전송거리 제한 해석)

  • Hong, Kwon-Eui;Ko, Sung-Won;Cho, Jung-Whan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.123-129
    • /
    • 2011
  • In terrestrial wireless optical communication links, atmospheric effects including turbulence, absorption and scattering have significant impact on the system performance. Based on the analysis of transmission in atmospheric channel concerning 830[nm] wavelength diode laser beam, performance of free space optical (FSO) link utilizing Galilean optics as a laser beam transmitting and receving optics, PIN photodiode as a detecting device. In this paper we designed optical link equation for received optical power and we analyze the atmospheric effects on the signal to noise ratio (SNR) and bit error rate (BER) of an terrestrial FSO system. We show that the possible communication distance for BER=$10^{-9}$ in proposed adverse atmospheric conditions.

An Indoor Broadcasting System Using Light-Emitting Diode Lamps Coupled with Power Line

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.342-347
    • /
    • 2015
  • We introduce an indoor broadcasting system using light-emitting diode (LED) lamps coupled with a 220 V power line. Two couplers connected to the power line constitute a power line communication (PLC) link. The transmission path from an LED lamp to a photodetector forms a visible light communication (VLC) link in free space. When the LED lamp is coupled to the power line, a composite PLC-VLC link is formed, making it possible to transmit a VLC signal beyond line-of-sight. In experiments, a 4 kHz analog signal modulated with a 100 kHz carrier was sent to the power line by a PLC coupler, and LED lamps coupled to the power line detected the signal and radiated it to multiple VLC receivers in the room. This configuration is useful in expanding an indoor VLC sensor network to adjacent rooms or constructing a voice broadcasting system in a building or apartments with existing power lines.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Increased Efficiency of Long-distance Optical Energy Transmission Based on Super-Gaussian (수퍼 가우시안 빔을 이용한 레이저 전력 전송 효율 개선)

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Hyesun Cha;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.150-156
    • /
    • 2024
  • One of the key factors in research regarding long-distance laser beam propagation, as in free-space optical communication or laser power transmission, is the transmission efficiency of the laser beam. As a way to improve efficiency, we perform extensive numerical simulations of the effect of modifying the laser beam's profile, especially replacing the fundamental Gaussian beam with a super-Gaussian beam. Numerical simulations of the transmitted power in the ideal diffraction-limited beam diameter determined by the optical system of the transmitter, after about 1-km propagation, reveal that the second-order super-Gaussian beam can yield superior performance to that of the fundamental Gaussian beam, in both single-channel and coherently combined multi-channel laser transmitters. The improvement of the transmission efficiency for a 1-km propagation distance when using a second-order super-Gaussian beam, in comparison with a fundamental Gaussian beam, is estimated at over 1.2% in the singlechannel laser transmitter, and over 4.2% and over 4.6% in coherently combined 3- and 7-channel laser transmitters, respectively. For a range of the propagation distance varying from 750 to 1,250 m, the improvement in transmission efficiency by use of the second-order super-Gaussian beam is estimated at over 1.2% in the single-channel laser transmitter, and over 4.1% and over 4.0% in the coherently combined 3- and 7-channel laser transmitters, respectively. These simulation results will pave the way for future advances in the generation of higher-order super-Gaussian beams and the development of long-distance optical energy-transfer technology.

A Successive Region Setting Algorithm Using Signal Strength Ranking from Anchor Nodes for Indoor Localization in the Wireless Sensor Networks (실내 무선 센서 네트워크에서의 측위를 위하여 고정 노드 신호들의 크기 순위를 사용한 순차적 구역 설정 알고리즘)

  • Han, Jun-Sang;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.51-60
    • /
    • 2011
  • Researches on indoor localization using the wireless sensor network have been actively carried out to be used for indoor area where GPS signal is not received. Computationally efficient WCL(Weighted Centroid Localization) algorithm is shown to perform relatively well. However, to get the best performance for WCL all the anchor nodes must send signal with power to cover 96% of the network. The fact that outside the transmission range of the fixed nodes drastic localization error occurs results in large mean error and deviation. Due to these problems the WCL algorithm is not easily applied for use in the real indoor environment. In this paper we propose SRS(Succesive Region Setting) algorithm which sequentially reduces the estimated location area using the signal strength from the anchor nodes. The proposed algorithm does not show significant performance degradation corresponding to transmission range of the anchor nodes. Simulation results show that the proposed SRS algorithm has mean localization error 5 times lower than that of the WCL under free space propagation environment.

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.