• Title/Summary/Keyword: Free Space Method

Search Result 607, Processing Time 0.024 seconds

Path Planning for Search and Surveillance of Multiple Unmanned Aerial Vehicles (다중 무인 항공기 이용 감시 및 탐색 경로 계획 생성)

  • Sanha Lee;Wonmo Chung;Myunggun Kim;Sang-Pill Lee;Choong-Hee Lee;Shingu Kim;Hungsun Son
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This paper presents an optimal path planning strategy for aerial searching and surveying of a user-designated area using multiple Unmanned Aerial Vehicles (UAVs). The method is designed to deal with a single unseparated polygonal area, regardless of polygonal convexity. By defining the search area into a set of grids, the algorithm enables UAVs to completely search without leaving unsearched space. The presented strategy consists of two main algorithmic steps: cellular decomposition and path planning stages. The cellular decomposition method divides the area to designate a conflict-free subsearch-space to an individual UAV, while accounting the assigned flight velocity, take-off and landing positions. Then, the path planning strategy forms paths based on every point located in end of each grid row. The first waypoint is chosen as the closest point from the vehicle-starting position, and it recursively updates the nearest endpoint set to generate the shortest path. The path planning policy produces four path candidates by alternating the starting point (left or right edge), and the travel direction (vertical or horizontal). The optimal-selection policy is enforced to maximize the search efficiency, which is time dependent; the policy imposes the total path-length and turning number criteria per candidate. The results demonstrate that the proposed cellular decomposition method improves the search-time efficiency. In addition, the candidate selection enhances the algorithmic efficacy toward further mission time-duration reduction. The method shows robustness against both convex and non-convex shaped search area.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

ARMA System identification Using GTLS method and Recursive GTLS Algorithm (GTLS의 ARMA시트템식별에의 적용 및 적응 GTLS 알고리듬에 관한 연구)

  • Kim, Jae-In;Kim, Jin-Young;Rhee, Tae-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.37-48
    • /
    • 1995
  • This paper presents an sstimation of ARMA coefficients of noisy ARMA system using generalized total least square (GTLS) method. GTLS problem for ARMA system is defined as minimizing the errors between the noisy output vectors and estimated noisy-free output. The GTLS problem is solved in closed form by eigen-problem and the perturbation analysis of GTLS is presented. Also its recursive solution (recursive GTLS) is proposed using the power method and the covariance formula of the projected output error vector into the input vector space. The simulation results show that GTLS ARMA coefficients estimator is an unbiased estimator and that recursive GTLS achieves fast convergence.

  • PDF

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

A Segment Space Recycling Scheme for Optimizing Write Performance of LFS (LFS의 쓰기 성능 최적화를 위한 세그먼트 공간 재활용 기법)

  • Oh, Yong-Seok;Kim, Eun-Sam;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.963-967
    • /
    • 2009
  • The Log-structured File System (LFS) collects all modified data into a memory buffer and writes them sequentially to a segment on disk. Therefore, it has the potential to utilize the maximum bandwidth of storage devices where sequential writes are much faster than random writes. However, as disk space is finite, LFS has to conduct cleaning to produce free segments. This cleaning operation is the main reason LFS performance deteriorates when file system utilization is high. To overcome painful cleaning and reduced performance of LFS, we propose the segment space recycling (SSR) scheme that directly writes modified data to invalid areas of the segments and describe the classification method of data and segment to consider locality of reference for optimizing SSR scheme. We implement U-LFS, which employs our segment space recycling scheme in LFS, and experimental results show that SSR scheme increases performance of WOLF by up to 1.9 times in HDD and 1.6 times in SSD when file system utilization is high.

Leakage Localization with an Acoustic Array that Covers a Wide Area for Pipeline Leakage Monitoring in a Closed Space (닫힌 공간에서의 광역배관 누출 감시를 위한 배열센서를 이용한 누설 위치 검출)

  • Park, Choon-Su;Jeon, Jong-Hoon;Park, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.422-429
    • /
    • 2013
  • It is of great importance to localize leakages in complex pipelines for assuring their safety. A sensor array that can detect where leakages occur enables us to monitor a wide area with a relatively low cost. Beamforming is a fast and efficient algorithm to estimate where sources are, but it is generally made use of in free field condition. In practice, however, many pipelines are placed in a closed space for the purpose of safety and maintenance. This leads us to take reflected waves into account to the beamforming for interior leakage localization. Beam power distribution of reflected waves in a closed space is formulated, and spatial average is introduced to suppress the effect of reflected waves. Computer simulations and experiments ensure how the proposed method is effective to localize leakage in a closed space for structural health monitoring.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

A Study on the Performance Improvement of Trellis coded 4-ary Continuous Phase FSK with Nonconstant Frequency Space (비일정 주파수 간격을 갖는 트렐리스 부호화 4-ary 연속위상 FSK의 성능개선에 관한 연구)

  • 조경룡;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1925-1934
    • /
    • 1994
  • In this paper, it was studied the method of performance improvement of trellis encoded 4-ray continuous phase FSK with nonconstant frequency space when permitted complexity. It was used the nonconstant mapper in order to produce nonconstant frequency, fixed maximum symbol values 3, -3 for comparision in similar bandwidth, changed symbol values 1, -1 from 0.5 to 3.0 as symmetry. Free Euclidean distance evaluation of all encoder/nonconstant mapper combinations, which is the parameter of performance of error probability, was performed with the trellis-based algorithm, we analyzed the characteristics of those.

  • PDF