• Title/Summary/Keyword: Free Molecular Regime

Search Result 18, Processing Time 0.019 seconds

Simulation of the Brownian Coagulation of Smoke Agglomerates in the Entire Size Regime using a Nodal Method (결절법을 이용한 전영역에서의 연기입자 응집체에 대한 브라운응집현상 해석)

  • Goo, Jae-Hark
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.681-691
    • /
    • 2011
  • The size distributions of smoke particles from fire are prerequisite for the studies on fire detection and adverse health effects. Above the flame of the fire, coagulation dominates and the smoke particles grow from 1 to 50 nm up to 100 to 3,000 nm, sizes ranging from the free-molecular regime to the continuum regime. The characteristics of the agglomeration of the smoke particles are well known, independently for each of the free-molecular and continuum regimes. However, there are not many systematic studies in the entire regime by the complexity of the mechanisms. The purpose of this work is to find the characteristics of the development of the size distribution of smoke particles by agglomeration in the entire size range covering the free-molecular regime, via transition regime, to the near-continuum and continuum regime for each variation of parameters such as fractal dimension, primary particle size and dimensionless coagulation time. In this work, the dynamic equation for the discrete-size spectrum of the particles was solved using a nodal method based on the modification of a sectional method. In the calculation, the collision frequency function for the entire regime, which is derived by using the concept of collision volume and general enhancement function, was applied. The self-preserving size distribution for the entire regime is compared with the ones for the free-molecular or continuum regimes for each variation of the parameters.

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites

  • Zeverdejani, Mehran Karimi;Beni, Yaghoub Tadi
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.103-114
    • /
    • 2020
  • In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore, vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on the buckling load and natural frequency of laminates which made from non-uniform layers.

Electrical Mobility Behavior of Nanoparticle Fractal Agglomerates in the Slip Regime (미끄럼 영역에 있는 나노입자 프랙탈 응집체의 전기이동도 거동 특성)

  • Shin, Weon Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.211-216
    • /
    • 2013
  • For diffusion limited cluster agglomerates the ratio of the mobility radius to the radius of gyration $R_m/R_g$ vs. N and the ratio of the mobility radius to the radius of primary particle $R_m$/a are determined using experimental data obtained with DMA-APM and tandem DMA over a range of Knudsen numbers extending into the transition region where there is a lack of data. It was found that in slip regime with the number of primary particles between 100 and 400, datapoints are found to be between the two asymptotic lines for the continuum and free molecular regimes as those datapoints are plotted in both $R_m/R_g$ vs. N and $R_m$/a vs. N.

The Measurement of Vacuum Pressure for the Rotors of Disk-type Molecular drag Pumps (원판형 분자 드래그펌프 회전자에 대한 압력 측정)

  • Kwon, Myoung-Keun;Kim, Do-Haeng;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2725-2730
    • /
    • 2007
  • Turbo-type molecular drag pumps ( MDPs ) are used in the liquid crystal display ( LCD ), semiconductor and other thin film industries. Siegbahn ( disk-type ) molecular drag pumps are used as high-pressure stages in the hybrid-type turbomolecular pumps, where they can operate in the viscous, the transition and the free molecular flow regime. In this study is performed to investigate the pumping characteristics of three-stage disk-type molecular drag pump ( DTDP ) in the molecular transition flow region. The experiments are measured using five vacuum pressure gauges in the positions for rotors of DTDP. The test is performed with nitrogen gas ( $N_2$ ).

  • PDF

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Free molecule transmission probability of a conical tube with wall sorption

  • 인상렬
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The uniform distributed pumping model is used to derive analytic expressions of the pressure profile for the molecular flow regime in linearly tapered or flared(conical or pyramidal) tubes with wall sorption. The concept of transmission conductance for sticky tubes of arbitrary shape is newly introduced to calculate the transmission probability using the pressure profile. The transmission probability obtained analytically for a conical sticky tube is compared with that from the Monte Carlo simulation.

Efficiency Analysis of Thermal Transpiration According to Knudsen Number for Application to Micro-propulsion System (마이크로 추진장치에 적용을 위한 누센수에 따른 열적발산원리의 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.483-490
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the Knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. Experimental results showed that thick membranes are more effective than thin membranes in transition flow regime, and pressure gradient efficiency according to Knudsen number is increased to maximum 82% apart from membrane thickness in free molecular regime.

Diffusion of CO2 Molecules in Polyethylene Terephthalate/Polylactide Blends Estimated by Molecular Dynamics Simulations

  • Liao, Li-Qiong;Fu, Yi-Zheng;Liang, Xiao-Yan;Mei, Lin-Yu;Liu, Ya-Qing
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.753-758
    • /
    • 2013
  • Molecular dynamics (MD) simulations have been used to study the diffusion behavior of small gas molecules ($CO_2$) in polyethylene terephthalate (PET)/polylactide (PLA) blends. The Flory-Huggins interaction parameters (${\chi}$) determined from the cohesive energy densities are smaller than the critical value of Flory-Huggins interaction parameters (${\chi}_{critical}$), and that indicates the good compatibility of PET/PLA blends. The diffusion coefficients of $CO_2$ are determined via MD simulations at 298 K. That the order of diffusion coefficients is correlated with the availably fractional free volume (FFV) of $CO_2$ in the PET/PLA blends means that the FFV plays a vital role in the diffusion behavior of $CO_2$ molecules in PET/PLA blends. The slopes of the log (MSD) as a function of log (t) are close to unity over the entire composition range of PET/PLA blends, which confirmes the feasibility of MD approach reaches the normal diffusion regime of $CO_2$ in PET/PLA blends.

Numerical Simulation for the Aggregation of Charged Particles (하전입자의 응집성장에 대한 수치적 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF