• Title/Summary/Keyword: Frame-based Model

Search Result 1,098, Processing Time 0.025 seconds

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Motion-Compensated Frame Interpolation Using a Parabolic Motion Model and Adaptive Motion Vector Selection

  • Choi, Kang-Sun;Hwang, Min-Chul
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.295-298
    • /
    • 2011
  • We propose a motion-compensated frame interpolation method in which an accurate backward/forward motion vector pair (MVP) is estimated based on a parabolic motion model. A reliability measure for an MVP is also proposed to select the most reliable MVP for each interpolated block. The possibility of deformation of bidirectional corresponding blocks is estimated from the selected MVP. Then, each interpolated block is produced by combining corresponding blocks with the weights based on the possibility of deformation. Experimental results show that the proposed method improves PSNR performance by up to 2.8 dB as compared to conventional methods and achieves higher visual quality without annoying blockiness artifacts.

Structural Analysis and Optimal Design of Eddy Current Brake Frame (와전류 제동프레임의 구조해석 및 최적설계)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.106-113
    • /
    • 2004
  • The eddy current brake system is a non-contact brake based on the mutual relation between the rail and the frame. Consequently, the accuracy is required in estimating the stress concentration and the deformation of the eddy current brake system. In this paper, the static analysis considering the gravity and the suction force for the deformation and the stress concentration of the main frame of the initially designed eddy current brake system was carried out. The shape of the I-type beam obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.

A Study on the Context-dependent Speaker Recognition Adopting the Method of Weighting the Frame-based Likelihood Using SNR (SNR을 이용한 프레임별 유사도 가중방법을 적용한 문맥종속 화자인식에 관한 연구)

  • Choi, Hong-Sub
    • MALSORI
    • /
    • no.61
    • /
    • pp.113-123
    • /
    • 2007
  • The environmental differences between training and testing mode are generally considered to be the critical factor for the performance degradation in speaker recognition systems. Especially, general speaker recognition systems try to get as clean speech as possible to train the speaker model, but it's not true in real testing phase due to environmental and channel noise. So in this paper, the new method of weighting the frame-based likelihood according to frame SNR is proposed in order to cope with that problem. That is to make use of the deep correlation between speech SNR and speaker discrimination rate. To verify the usefulness of this proposed method, it is applied to the context dependent speaker identification system. And the experimental results with the cellular phone speech DB which is designed by ETRI for Koran speaker recognition show that the proposed method is effective and increase the identification accuracy by 11% at maximum.

  • PDF

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

A Study on Dynamic Characteristics of a Weight-Reduced Bogie Frame (경량화된 대차프레임의 동적특성에 관한 연구)

  • 최경호;박정호;안찬우;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.823-826
    • /
    • 2001
  • A shape optimization of a rib of a bolster of a bogie frame is attempted and a dimension optimization on upper and lower plates is also carried out for the reduction of the weight of bogie frame. In addition, the dynamic characteristics of the weight reduced model are investigated by an analysis of a natural frequency and a transient analysis. The results show that the first natural frequency of an optimized model is larger than that of the lowest design value. And the results of transit analysis based on the experimental stress also show smaller value than the yield stress. Thus the optimized model attempted in this study is considered to be structurally stable and useful for the improvement of railway carriages.

  • PDF

Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy

  • Dehcheshmeh, M. Mohamadi;Hosseinzadeh, A. Zare;Amiri, G. Ghodrati
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.

Speaker Verification with the Constraint of Limited Data

  • Kumari, Thyamagondlu Renukamurthy Jayanthi;Jayanna, Haradagere Siddaramaiah
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.807-823
    • /
    • 2018
  • Speaker verification system performance depends on the utterance of each speaker. To verify the speaker, important information has to be captured from the utterance. Nowadays under the constraints of limited data, speaker verification has become a challenging task. The testing and training data are in terms of few seconds in limited data. The feature vectors extracted from single frame size and rate (SFSR) analysis is not sufficient for training and testing speakers in speaker verification. This leads to poor speaker modeling during training and may not provide good decision during testing. The problem is to be resolved by increasing feature vectors of training and testing data to the same duration. For that we are using multiple frame size (MFS), multiple frame rate (MFR), and multiple frame size and rate (MFSR) analysis techniques for speaker verification under limited data condition. These analysis techniques relatively extract more feature vector during training and testing and develop improved modeling and testing for limited data. To demonstrate this we have used mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) as feature. Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) are used for modeling the speaker. The database used is NIST-2003. The experimental results indicate that, improved performance of MFS, MFR, and MFSR analysis radically better compared with SFSR analysis. The experimental results show that LPCC based MFSR analysis perform better compared to other analysis techniques and feature extraction techniques.

Tracking a Moving Object Using an Active Contour Model Based on a Frame Difference Map (차 영상 맵 기반의 능동 윤곽선 모델을 이용한 이동 물체 추적)

  • 이부환;김도종;최일;전기준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.153-163
    • /
    • 2004
  • This paper presents a video tracking method for a deformable moving object using an active contour model in the image sequences. It is quite important to decide the local convergence directions of the contour points for correctly extracting the boundary of the moving object with deformable shape. For this purpose, an energy function for the active contour model is newly proposed by adding a directional energy term using a frame difference map to tile Greedy algorithm. In addition, an updating rule of tile frame difference map is developed to encourage the stable convergence of the contour points. Experimental results on a set of synthetic and real image sequences showed that the proposed method can fully track the deformable object while extracting the boundary of the object elaborately in every frame.