• Title/Summary/Keyword: Frame structural analysis

Search Result 1,316, Processing Time 0.029 seconds

Structural Analysis of Running Machine Frame (런닝렁머신 프레임의 구조해석)

  • 이종선;김세환;이현곤
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • This study is object to structural analysis of running machine frame. The finite element model was developed to compute the stress, strain and natural frequency for running machine frame. For structural analysis using result from FEM Code. In other to structural analysis of running machine frame, many variables such as load condition, boundary condition and weight condition are considered.

Structural Analysis of Household Runninng Machine Frame (가정용 런닝머신 프레임의 구조해석)

  • 원종진;이종선;김형철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.85-90
    • /
    • 2001
  • This study is object to structural analysis of household running machine frame. The finite element model was developed to compute the stress, strain and natural frequency for household running machine frame. For structural analysis using result from FEM Code. In other to structural analysis of household running machine frame, many variables such as load condition, boundary condition and weight condition are considered.

A Study on Evaluation of Structural Integrity and Fatigue Analysis for the Bogie Frame of Monorail (모노레일 대차프레임에 대한 구조 안전성 및 피로강도 평가에 관한 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Lee, Kwang-Seop;Lee, Eun-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.609-614
    • /
    • 2010
  • In this paper, the structural integrity and fatigue strength for the bogie frame of Monorail being developed in domestic was evaluated. Presently, the standard of evaluation for the bogie frame of monorail was not regulated. Therefore, the evaluation of the structural integrity and fatigue strength for the bogie frame was performed on the basis of the UIC 615-4 standard. The structural integrity of the designed bogie frame was evaluated by displacement and Von-Mises stress under each load conditions. And the fatigue strength was evaluated by combined main in-service load conditions specified at UIC 615-4 standard and it was compared with result of fatigue analysis using winLIFE v3.1 with the function of batch processing. The results shows that the structural integrity and fatigue strength of the designed bogie frame was satisfied, and the fatigue analysis using batch processing was more effective than conventional fatigue analysis using combined load conditions.

  • PDF

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

Vibration reduction of military vehicle frame with using structural dynamic characteristics analysis (구조 동특성 분석을 통한 군용 차량 프레임 진동 저감)

  • Lee, Sang-Jeong;Park, Jong-Beom;Park, No-Cheol;Lee, Jong-Hak;Kim, Han-Shang;Jeong, Eui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.281-284
    • /
    • 2014
  • Unlike ordinary vehicle chassis frame, chassis frame of military vehicle is long and that is operated in harsh driving environment in middle of war. Thus, because large dynamic loads is acting on the frame, it is important to secure the durability of the frame based on the structural dynamic characteristic analysis. The purpose of the study is that the chassis frame is optimized to secure durability of the chassis frame of the military vehicle according to the structural dynamic characteristic analysis. Also, structure optimization are performed using parametric optimization and topology optimization methods.

  • PDF

The Fatigue life evaluation and load history measurement for Bogie frame of locomotive (디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가)

  • Seo, Jung-Won;Kwon, Suck-Jin;Ham, Young-Sam;Kwon, Sung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF

Structural Analysis of the Lower Frame in the Multi-aerial Platform (복합굴절차의 하부 프레임에 대한 구조해석)

  • Kang, Sung-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.69-75
    • /
    • 2015
  • This research focuses on structural stability of the multi-aerial platform. In this study, we conduct structural analysis for the lower structures such as sub frame, out-trigger and chassis frame, by using a universal structural analysis program NASTRAN based on 3D CAD data, material properties, load conditions and boundary conditions. We confirm the position of local stress exceeding the yield strength, through structural analysis of 4 cases for load conditions. As the results, it is possible to relax stress concentration in a way such as changing the thickness, reinforcing the material of the lower frames.

Shear Lag Phenomenon in Shear/Core Wall of Wall-Frame Structures (골조-전단벽 구조에서 전단/코어벽의 Shear Lag 현상)

  • 이은진;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.215-222
    • /
    • 2001
  • This study investigates the shear lag phenomenon existing in the shear wall of the wall-frame structure. Elastic analysis of such structures is carried out using a 3-D frame analysis program. The structural parameters governing the shear lag phenomenon are wall height and thickness. The analysis shows that the overturning moment due to external lateral load is resisted by both of the shear/core wall and the external frame. Severe unstable stresses are identified in height ratio of about 0.7 The taller or thinner wall shows the smaller shear lag phenomenon.

  • PDF

Structural Analysis of Ruining Machine Frame (런닝머신 프레임의 구조해석)

  • 이종선;김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • This study is object to structural analysis of running machine frame. The finite element model was developed to compute the stress. strain and natural frequency for running machine frame. The FEM code was used for this analysis. In other to structural analysis of running machine frame, many variables such as load condition, boundary condition and weight condition were considered.

  • PDF

Evaluation of Structural Integrity of Three-axle Bogie Frame used in Railway Freight Cars (평판화차에 사용되는 3축 대차의 구조 안전성 평가)

  • Kang, Seung-Gu;Shin, Kwang-Bok;Im, Jae-Moon;Park, Jung-Joon;Jeon, Seung-Gie
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.436-440
    • /
    • 2017
  • This study evaluated the design and structural integrity of a three-axle bogie frame in a railway freight car through a numerical analysis and an experimental evaluation. A three-axle bogie frame, which supports the weight of the car body and load, is required to transport heavier cargo because two-axle vehicles have structural limitations. Therefore, this study performed a structural analysis and static load tests to evaluate the design and structural integrity of a three-axle bogie frame. The results obtained from the numerical analysis were compared to those of the experiments. For the bogie frame used in the experiments, a failure evaluation was performed using non-destructive methods. The numerical analysis and experimental evaluation were satisfactory for the structural integrity evaluation.