• 제목/요약/키워드: Frame element

검색결과 1,234건 처리시간 0.021초

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.

Effect of link length in retrofitted RC frames with Y eccentrically braced frame

  • INCE, Gulhan
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.553-564
    • /
    • 2022
  • Many existing reinforced concrete (RC) structures need to be strengthening for reason such as poor construction quality, low ductility or designing without considering seismic effects. One of the strengthening methods is strengthening technique with eccentrically braced frames (EBFs). The characteristic element of these systems is the link element and its length is very important in terms of seismic behavior. The link element of Y shaped EBF systems (YEBFs) is designed as a short shear element. Different limits are suggested in the literature for the link length. This study to aim experimentally investigate the effect of the link length for the suggested limits on the behavior of the RC frame system and efficiency of strengthening technique. For this purpose, a total of 5 single story, single span RC frame specimens were produced. The design of the RC frames was made considering seismic design deficiencies. Four of the produced specimens were strengthened and one of them remained as bare specimen. The steel YEBFs were used in strengthening the RC frame and the link was designed as a shear element that have different length with respect to suggested limits in literature. The length of links was determined as 50mm, 100mm, 150mm and 200mm. All of the specimens were tested under cyclic loads. The obtained results show that the strengthening technique improved the energy consumption and lateral load bearing capacities of the bare RC specimen. Moreover, it is concluded that the specimens YB-2 and YB-3 showed better performance than the other specimens, especially in energy consumption and ductility.

골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용 (Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture)

  • 정우양;카알 A. 에켈만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

FRP 기둥 재킷 시스템이 보강된 지진 취약 철근콘크리트 건축물의 유한요소해석 (Finite Element Analyses of Seismically Vulnerable Reinforced Concrete Building Frame Retrofitted Using FRP Column Jacketing System)

  • 신지욱;이상열;지동현
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 2021
  • This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.

피로 강도 및 경량화를 고려한 대차프레임 설계 (Bogie Frame Design Considering Fatigue Strength and Minimize Weight)

  • 박병화;김남포;김정석;이강용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.579-584
    • /
    • 2004
  • In development of the bogie, the fatigue strength of the bogie frame is an important design criteria. Also the bogie frame weight reduction is required in order to save energy and materials. In this study. structural analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC standards and it has been attempted minimize the weight of bogie frame by back-propagation neural network and genetic algorithm. Finite element mesh generation and finite element analysis were performed by Altaire Hyper Mesh and ABAQUS.

  • PDF

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

블랭킹 잔류응력에 의한 리드프레임 변형 수치해석을 위한 대격자 모델 (A Coarse Mesh Model for Numerical Analysis of Lead Frame Deformation Due to Blanking Residual Stress)

  • 김용연
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2005
  • The deformation of sheet metal due to the residual stress during blanking or piercing process, is numerically simulated by means of a commercial finite element code. Two dimensional plain strain problem is solved and then its result is applied to the deformation analysis of the lead frame. The plain strain element is applied to the 2D problem to observe the Von Mises equivalent stress concentration at the both shearing edges. As the punch penetrates into the sheet material, the stress concentration generated on both edges is getting increased to be the shearing surface. The limits of the punching depth applied to the simulation is 16% and 24% of the sheet thickness for the plain strain element and the hexahedral element, respectively. The hexahedral element and the limit of punching depth were applied to the deformation analysis of the lead frame for the blanking process. The FEM results for the lead deformation were very good agreement with the experimental ones. This paper shows that the coarse mesh has enabled to analyze the lead deformation generated due to the blanking mechanism. This simple approach to save the calculation time will be very effective to the design of the blanking tools in industries.