• 제목/요약/키워드: Frame Stiffness

검색결과 849건 처리시간 0.024초

골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용 (Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture)

  • 정우양;카알 A. 에켈만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

가새 골조에서 거싯 플레이트 연결부의 강성 평가 (Evaluation of Gusset Plate Connection Stiffness in Braced Frames)

  • 유정한
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.105-113
    • /
    • 2009
  • 가새골조 성능을 개선하기 위해 연결부 (거싯 플레이트) 강도, 강성, 연성이 골조 디자인에 직접적으로 고려되어야 한다. 연결부의 강도는 지진력에 저항하도록 디자인 되어야하고 필요한 골조시스템의 연성을 확보하는데 기여해야한다. 그리고 연결부의 강성은 구조요소와 연결부의 동적 반응과 변위 요구에 영향을 준다. 이 논문에서 지난 실험 결과를 이용하여 거싯 플레이트 연결부에 대한 현 디자인 모델을 검토하고 평가한다. 현 디자인 모델은 연결부 디자인 가이드라인을 주기엔 적절하지 못하고 실제 거싯 플레이트의 응력과 변위 상태는 비선형이고 굉장히 복잡하다. 구조 디자이너들은 시스템과 연결부의 성능을 대략적으로 예측하기 위해 보와 기둥을 포함한 단순한 모델을 원한다. 이를 위해 단순화한 디자인 모델이 개발되고 평가된다. 이 모델은 비교적 정확하고 신뢰성 있는 연결부 강성 평가를 제공한다.

연성적인 접합부를 가진 프리캐스트 콘크리트 골조건물의 변형수요 (Deformation Demand of the Precast Concrete Frame Buildings with Ductile Connection in Moderate Seismic Regions)

  • 서수연;이리형
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-98
    • /
    • 1999
  • This paper evaluates nonlinear response characteristics of precast concrete frame buildings. where plastics hinging occurs in the precast connection. Designs were developed for buildings of 5, 10 and 15 stories in hight for moderate seismic risk regions of the U. S. The responses of the buildings were analyzed using DRAIN-2DX and following Nonlinear static analysis procedure of ATC 19. The main variables of the analyses were the strength and stiffness of the connection. Also, for the analysis, the bi-linear response model, developed and inserted into the DRAIN-2DX program by Shan Shi and D. Fouch, was used. With the results of analysis, the deformation demands of the connection of precast concrete frame buildings are proposed by using equal-dissipated energy capacity. It was shown that the strength of the buildings as well as their displacement capacities decreased with the decrease of either the strength or stiffness in the connections. Therefore such changes also require reductions in the response modification factors for such buildings. However, if the precast concrete frame building has plastic hinging in the connection, and has a more ductile connection than the monolithic frame building, then no reduction in R may be necessary. The deformation demand required of the connection to achieve that condition is evaluated and a simple relation is suggested in the paper.

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

수평력과 축력을 받는 강골조의 최대수평내력 평가 (Evaluation of the Lateral Ultimate Strength of Steel Moment Resisting Frames under Axial and lateral Forces)

  • 김종성
    • 한국강구조학회 논문집
    • /
    • 제11권1호통권38호
    • /
    • pp.69-78
    • /
    • 1999
  • 구조물이 지진과 같은 수평력을 받으면 골조의 기둥은 횡이동을 하게 되고 이 횡이동이 크면 골조는 불안정 좌굴, 초기항복, 골조전체의 강성이 감소하게 된다. 본 연구에서는 이러한 골조의 기둥이 횡이동에 의해 수평력과 축력을 동시에 받는 강골조를 대상으로하여 골조강성의 저하, 보와 기둥의 상대적인 강성비, 세장비효과, 하중조건 등을 고려한 다양한 해석모델을 상정하여 수치해석을 실시했다. 그 해석결과를 분석하여 강골조의 최대수평내력을 평가하고, 기둥의 세장비 제한치를 구하는 절차에 대해서도 검토한다. 해석에 있어서는, 골조의 $P-{\Delta}$효과를 고려해서 기발표된 저자의 탄소성해석법을 이용하여 일정한 축력하에 점증의 수평력을 골조에 가했으며, 최대내력후의 해법으로서 일반역행렬을 응용했다.

  • PDF