• Title/Summary/Keyword: Frame Camera

Search Result 613, Processing Time 0.024 seconds

3D Motion of Objects in an Image Using Vanishing Points (소실점을 이용한 2차원 영상의 물체 변환)

  • 김대원;이동훈;정순기
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.621-628
    • /
    • 2003
  • This paper addresses a method of enabling objects in an image to have apparent 3D motion. Many researchers have solved this issue by reconstructing 3D model from several images using image-based modeling techniques, or building a cube-modeled scene from camera calibration using vanishing points. This paper, however, presents the possibility of image-based motion without exact 3D information of scene geometry and camera calibration. The proposed system considers the image plane as a projective plane with respect to a view point and models a 2D frame of a projected 3D object using only lines and points. And a modeled frame refers to its vanishing points as local coordinates when it is transformed.

Development of 3-D Stereo PIV (3차원 스테레오 PIV 개발)

  • Kim Mi-Young;Choi Jang-Woon;Nam Koo-Man;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

A VISION SYSTEM IN ROBOTIC WELDING

  • Absi Alfaro, S. C.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.314-319
    • /
    • 2002
  • The Automation and Control Group at the University of Brasilia is developing an automatic welding station based on an industrial robot and a controllable welding machine. Several techniques were applied in order to improve the quality of the welding joints. This paper deals with the implementation of a laser-based computer vision system to guide the robotic manipulator during the welding process. Currently the robot is taught to follow a prescribed trajectory which is recorded a repeated over and over relying on the repeatability specification from the robot manufacturer. The objective of the computer vision system is monitoring the actual trajectory followed by the welding torch and to evaluate deviations from the desired trajectory. The position errors then being transfer to a control algorithm in order to actuate the robotic manipulator and cancel the trajectory errors. The computer vision systems consists of a CCD camera attached to the welding torch, a laser emitting diode circuit, a PC computer-based frame grabber card, and a computer vision algorithm. The laser circuit establishes a sharp luminous reference line which images are captured through the video camera. The raw image data is then digitized and stored in the frame grabber card for further processing using specifically written algorithms. These image-processing algorithms give the actual welding path, the relative position between the pieces and the required corrections. Two case studies are considered: the first is the joining of two flat metal pieces; and the second is concerned with joining a cylindrical-shape piece to a flat surface. An implementation of this computer vision system using parallel computer processing is being studied.

  • PDF

High Resolution Video Synthesis with a Hybrid Camera (하이브리드 카메라를 이용한 고해상도 비디오 합성)

  • Kim, Jong-Won;Kyung, Min-Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • With the advent of digital cinema, more and more movies are digitally produced, distributed via digital medium such as hard drives and network, and finally projected using a digital projector. However, digital cameras capable of shotting at 2K or higher resolution for digital cinema are still very expensive and bulky, which impedes rapid transition to digital production. As a low-cost solution for acquiring high resolution digital videos, we propose a hybrid camera consisting of a low-resolution CCD for capturing videos and a high-resolution CCD for capturing still images at regular intervals. From the output of the hybrid camera, we can synthesize high-resolution videos by software as follows: for each frame, 1. find pixel correspondences from the current frame to the previous and subsequent keyframes associated with high resolution still images, 2. synthesize a high-resolution image for the current frame by copying the image blocks associated with the corresponding pixels from the high-resolution keyframe images, and 3. complete the synthesis by filling holes in the synthesized image. This framework can be extended to making NPR video effects and capturing HDR videos.

  • PDF

MPEG Video Segmentation using Two-stage Neural Networks and Hierarchical Frame Search (2단계 신경망과 계층적 프레임 탐색 방법을 이용한 MPEG 비디오 분할)

  • Kim, Joo-Min;Choi, Yeong-Woo;Chung, Ku-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.114-125
    • /
    • 2002
  • In this paper, we are proposing a hierarchical segmentation method that first segments the video data into units of shots by detecting cut and dissolve, and then decides types of camera operations or object movements in each shot. In our previous work[1], each picture group is divided into one of the three detailed categories, Shot(in case of scene change), Move(in case of camera operation or object movement) and Static(in case of almost no change between images), by analysing DC(Direct Current) component of I(Intra) frame. In this process, we have designed two-stage hierarchical neural network with inputs of various multiple features combined. Then, the system detects the accurate shot position, types of camera operations or object movements by searching P(Predicted), B(Bi-directional) frames of the current picture group selectively and hierarchically. Also, the statistical distributions of macro block types in P or B frames are used for the accurate detection of cut position, and another neural network with inputs of macro block types and motion vectors method can reduce the processing time by using only DC coefficients of I frames without decoding and by searching P, B frames selectively and hierarchically. The proposed method classified the picture groups in the accuracy of 93.9-100.0% and the cuts in the accuracy of 96.1-100.0% with three different together is used to detect dissolve, types of camera operations and object movements. The proposed types of video data. Also, it classified the types of camera movements or object movements in the accuracy of 90.13% and 89.28% with two different types of video data.

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

An Efficient Navigation of Volume Dataset Using z-Buffer (z-버퍼를 이용한 효율적인 볼륨 데이터 항행기법)

  • Kim, Hwa-Jin;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • In virtual endoscopy, it is important to produce high quality perspective images in real-time. However, it is more significant to devise a navigation method that can make a virtual camera move through in human cavities such as colon and bronchus without collision and let the user control the camera intuitively. We propose an efficient navigation method, which generates 2D depth map during rendering the current frame, then determines position and direction of camera using the depth information. It offers collision-free navigation and allows us to control the camera as we want. Also it does not require preprocessing step and additional data structures.

  • PDF

A Study on the Workflow of Cinematography with 4K High Speed Camera (4K 초고속 카메라 촬영기술의 워크플로우에 관한 연구)

  • Kim, Sang-Il;Park, Sung-Chul;Kim, Jung-Ho;Kwon, Soon-Chul;Lee, Seung-Hyun
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.425-432
    • /
    • 2014
  • 4K high speed camera shooting enables shooting of fast subjects in Full HD 4 times resolution without motion blur due to increase in resolution and shutter speed. However, this shooting incurs several limitations including focus, intensity of radiation and increase in data quantity. As lack of intensity of radiation may occur due to increased shutter speed, it is shoot by opening aperture and limitation in focusing follows. In addition, there is limitation in shooting records since it has restriction in storage due to increased resolution and frame rate. In this regard, this study aims to analyze the limitations shown above through production case of 4K high speed camera (Phantom Flex 4K) and to design effective workflow to overcome this.