• Title/Summary/Keyword: Fragility Curve

Search Result 163, Processing Time 0.02 seconds

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

An Estimation of Amount of Damage Using the 3-second Gust When the Typhoon Attack (태풍 내습 시 3-second gust를 이용한 피해액 산정)

  • Jung, Woo-Sik;Park, Jong-Kil;Choi, Hyo-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.353-363
    • /
    • 2010
  • The most efficient measures to reduce damage from natural disasters include activities which prevent disasters in advance, decrease possibility of disasters and minimize the scale of damage. Therefore, developing of the risk assessment model is very important to reduce the natural disaster damage. This study estimated a typhoon damage which is the biggest damage scale among increased natural disasters in Korea along with climate change. The results of 3-second gust at the height of 10m level from the typhoon 'Maemi' which did considerable damage to Korean in 2003, using the wind data at the height of 700 hPa. September 12th 09 LST~13th 12 LST period by the time a typhoon Maemi approached to the Korean peninsula. This study estimate damage amount using 'Fragility curve' which is the damage probability curve about a certain wind speed of the each building component factors based on wind load estimation results by using 3-second gust. But the fragility curve is not to Korea. Therefore, we use the fragility curves to FPHLM(FDFS, 2005). The result of houses damage amount is about 11 trillion 5 million won. This values are limit the 1-story detached dwelling, $62.51\sim95.56\;m^2$ of total area. Therefore, this process is possible application to other type houses.

Seismic Fragility for 5MW Offshore Wind Turbine using Pushover Analysis (Pushover 해석을 이용한 5MW급 해상풍력터빈의 지진취약도)

  • Lee, Sang-Geun;Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.98-106
    • /
    • 2013
  • Seismic fragility curves for an offshore wind-turbine structure were obtained. The dynamic response of an offshore wind turbine was analyzed by considering the nonlinear behavior of layered soil and the added mass effect due to seawater. A pile-soil interaction effect was considered by using nonlinear p-y, t-z curves. In the analysis, the amplification effect of ground acceleration through layered soil was considered by applying ground motion to each of the soil layers. The vertical variation in ground motion was found by one-dimensional free-field analysis of ground soils. Fragility curves were determined by damage levels in terms of tower stress and nacelle displacements that were found from static pushover analysis of the wind-turbine structure.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Basin edge effect on industrial structures damage pattern at clayey basins

  • Khanbabazadeh, Hadi;Zulfikar, Abdullah C.;Yesilyurt, Ali
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • In this numerical study, the 2D dynamic behavior of a clayey basin and its effect on damage pattern over basin edge are investigated. To attain this goal, a fully nonlinear time domain analysis method has been applied. Then, the fragility curves of the considered two typical industrial structures for that certain point are estimated using the acceleration time histories recorded at each surface point. The results show that the use of the damage related parameters in site effect analyses, instead of amplification curves, can yield more realistic estimation of the basin dynamic response. In a distance about 150 m from outcrop at the basin edge, the differences between fragility curves increase when increasing the distance from outcrop with respect to the reference rock site. Outside this region and towards the basin center, they tend to occur in rather single curves. Furthermore, to connect the structural damage to the basin edge effect, the earthquake demand value at different points for two typical structures was evaluated. It was seen that the probability of occurrence of damage increases over 250 m from outcrop, while the effect of the basin edge was limited to 150 m in case of the basin edge evaluation by using fragility curves.

Blast fragility of base-isolated steel moment-resisting buildings

  • Dadkhah, Hamed;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-475
    • /
    • 2021
  • Strategic structures are a potential target of the growing terrorist attacks, so their performance under explosion hazard has been paid attention by researchers in the last years. In this regard, the aim of this study is to evaluate the blast-resistance performance of lead-rubber bearing (LRB) base isolation system based on a probabilistic framework while uncertainties related to the charge weight and standoff distance have been taken into account. A sensitivity analysis is first performed to show the effect of explosion uncertainty on the response of base-isolated buildings. The blast fragility curve is then developed for three base-isolated steel moment-resisting buildings with different heights of 4, 8 and 12 stories. The results of sensitivity analysis show that although LRB has the capability of reducing the peak response of buildings under explosion hazard, this control system may lead to increase in the peak response of buildings under some explosion scenarios. This shows the high importance of probabilistic-based assessment of isolated structures under explosion hazard. The blast fragility analysis shows effective performance of LRB in mitigating the probability of failure of buildings. Therefore, LRB can be introduced as effective control system for the protection of buildings from explosion hazard regarding uncertainty effect.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Fragility Assessment of Offshore Wind Turbine by Ship Collision (선박충돌에 의한 해상풍력발전기의 취약도 평가)

  • Cho, Byung Il;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.236-243
    • /
    • 2013
  • Offshore wind turbines has to be proved against accidental events such as ship collision. In this study, ship collision fragility analysis of offshore wind turbine is done. Dynamic collision analysis is accomplished by considering soil foundation interaction and fluid structure interaction. Uncertainties due to ship weight and speed, angle are also considered. By analyzing dynamic response of offshore wind turbine, fragility curves are obtained for different damage levels. They can be used for restricting boat speed around the wind turbine and allowable size of the boat for inspection and for other purposes. Results of the fragility, it was confirmed fragility of collision speed of bulk ship of 30,000DWT and 850ton barge ship.

Seismic Fragilities of Bridges and Transmission Towers Considering Recorded Ground Motions in South Korea (한국의 지반거동을 고려한 교량과 송전철탑의 지진취약도 분석)

  • Park, Hyo Sang;Nguyen, Duy-Duan;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.435-441
    • /
    • 2016
  • The Korean peninsula has known as a minor-to-moderate seismic region. However, some recent studies had shown that the maximum possible earthquake magnitude in the region is approximately 6.3-6.5. Therefore, a seismic vulnerability assessment of the existing infrastructures considering ground motions in Korea is necessary. In this study, we developed seismic fragility curves for a continuous steel box girder bridge and two typical transmission towers, in which a set of seven artificial and natural ground motions recorded in South Korea is used. A finite element simulation framework, OpenSees, is utilized to perform nonlinear time history analyses of the bridge and a commercial software, SAP2000, is used to perform time history analyses of the transmission towers. The fragility curves based on Korean ground motions were then compared with the fragility curves generated using worldwide ground motions to evaluate the effect of the two ground motion groups on the seismic fragility curves of the structures. The results show that both non-isolated and base-isolated bridges are less vulnerable to the Korean ground motions than to worldwide earthquakes. Similarly to the bridge case, the transmission towers are safer during Korean motions than that under worldwide earthquakes in terms of fragility functions.

Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses (증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수)

  • Lee, Seung-Won;Yi, Waon-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Accuracy of seismic response evaluated by a capacity spectrum method (CSM) is generally known to be less than that by Incremental dynamic analysis (IDA). In this paper, a procedure for IDA based seismic fragility curves for steel moment resisting frames was suggested. This study compares seismic fragility curves using the suggested method (IDA method) with those using a CSM and intends to verify the validity of the IDA method. The shapes of both seismic fragility curves are similar in slight and moderate damage states. However, in the case of extensive and complete damage states, the fragility curves obtained from the IDA method presents a more steep slope due to less variation (or uncertainties). This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM.