• Title/Summary/Keyword: Fracture-separation

Search Result 114, Processing Time 0.024 seconds

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

Analysis of Toughening Mechanism of Ceramic Composites by Acoustic Emission (AE(Acoustic Emission)에 의한 세라믹 복합재료의 고인성화 기구 분석)

  • 장병국
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1129-1138
    • /
    • 1997
  • Al2O3/20 vol%YAG composite containing equiaxed grains and Al2O3/20 vol%LaAl11O18 composite containing elongated grains were fabricated using Al2O3-Y2O3 composition and Al2O3-La2O3 composition, respectively, by hot-pressing. In order to investigate the influence of microstructural control of second phase on toughening effect of toughened ceramic composites, AE (acoustic emission) measurements have been coupled with fracture toughness experiments(SENB and SEPB method). A separation of the fracture toughness and analysis of toughening mechanism was possible using the AE technique. The fracture toughness of hot-pressed materials was estimated to be 3.2 MPam0.5 for monolithic alumina, 4.7 MPam0.5 for Al2O3/20 vol%YAG composite and 6.2 MPam0.5 for Al2O3/20 vol%LaAl11O18 composite. In monolithic Al2O3, toughening does not occur as a result of either microcracking or grain bridging, whereas, composites exhibit toughening effects by both microcracking in the frontal zone and gain bridging in the wake zone, resulting in an improvement of fracture toughness as compared with monolithic Al2O3. The fracture toughness of Al2O3/20 vol%LaAl11O18 composite is higher than that of Al2O3/20 vol%YAG composite. It may be attributed to the elongated microstructure of Al2O3/20 vol%LaAl11O18 composite, resulting relatively greater bridging effect.

  • PDF

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

A Case of Atypical Bone Growth after Femur Neck Fracture in the Paraplegic Patient with Trochanteric Sore (대전자부 압박궤양을 가지고 있는 하지마비 환자에서 대퇴골 골절부위에 발생한 비정상적 골증식의 치험례)

  • Yang, Jeong Yeol;Cheon, Ji Seon
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.92-95
    • /
    • 2008
  • Purpose: Heterotopic ossification in pressure sore patients is reported to rarely develop, but once it occurs, it frequently causes joint stiffness and mobilization restriction. The aim of this article is to report our experience of atypical bone growing at femur neck fracture site with chronic, extensive pressure sore in patient with paraplegia secondary to spinal injury. Methods: A 28-year-old male patient presented with atypical bone growth at femur neck fracture site with pressure sore. He had undergone atypical growth bone removal and separation of united iliac bone and femur, and then pressure sore was covered by advanced rotation flap. Results: The patient mobilized hip joint and rode in a wheelchair. Complications such as dehiscence, infection, hematoma and flap necrosis did not occur. Conclusion: We experienced successful correction of atypical bone growth removal and recovery of pressure sore. We report our experience of atypical bone growth of fracture site and the related literature was reviewed.

LIFETIME AND FRACTURE PATTERNS OF NITI ROTARY FILES IN MOLARS (대구치에서 회전식 NiTi file의 수명과 파절양상)

  • Kim, Jin-Woo;Ahn, Byung-Doo;Park, Se-Hee;Shin, Hye-Jin;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.184-192
    • /
    • 2005
  • Intracanal separation of the rotary files is a serious concern in modern endodontic practice. The objective of this study was to compare the life span and fracture patterns of three NiTi rotary files in molar teeth Mesiobuccal roots of upper molar (n = 150) and mesial roots of lower molar (n = 150) were divided into three groups and each group was prepared with Profile, ProTaper, and K3 respectively. Every file was used until separation and/or deterioration of the cutting blade was happened, and then the number of canals to separation and/or unwinding were recorded. Radiographs and Scanning electon microscope (SEM) photographs were taken to evaluate the patterns of separation. The results were as follows: 1. There were no significant differences in numbers of canals to separation and/or unwinding among the groups. 2. Comparing between flaring files, K3 showed significant lower numbers of canals to separation and/or unwinding (p < 0.05), and there was no significant difference between shaping files 3. Separations of instruments were occurred at the midpoint of curvatures within the canals 4. In SEM observations, ductile fractures were seen in most of cases, characterized by shallow dimples. Additional researches is needed to provide a new guideline that informs the appropriate number of times to use NiTi files.

Dissolution on the Surface of Bioceramics Prepared by Commercial Calcium Phosphate Powders (상용 인산칼슘계 분말로 제조된 생체세라믹스의 표면용해 특성)

  • Seo D. S;Kim H;Lee J. K
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • In this study, dissolution characteristics of four types of commercial calcium phosphate ceramics were investigated in distilled water with respect to chemical composition and microstructure. For all samples, no significant damage was observed after 3 days of immersion. Following the 7 days of immersion, surface dissolution of the ceramics containing a crystalline phase susceptible to water such as TCP, even pure hydroxyapatite, was initiated at grain boundaries and the dissolution was extended interior to the material along the grain boundaries. In the considerably dissolved area, there was grain separation followed by the formation of 20 $\mu\textrm{m}$ of cavities. In at least one case, the residual pores on the surface appeared to initiate dissolution. In a dissolved area, a crack during the fracture propagates along the grain boundaries resulting in intergranular fracture, while transgranular fracture occurs in a dense area without significant dissolution.

The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED (CED에 의한 계면굴절균열의 진전거동평가)

  • Kwon, O.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints (이종마찰 접합계면부의 소성유동 방향성 및 강도 평가)

  • Oh, Jung-Kuk;Sung, Back-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.

Application of the Reflective Photoelastic Experimental Method to Fatigue Fracture (피로파괴에 반사형 광탄성 실험법 응용)

  • Nam, Byeong-Gun;Hwang, Jae-Seok;Lee, Hyo-Jae;Baek, Un-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1297-1304
    • /
    • 2000
  • The reflective photoelastic experiment can be used more effectively than the transparent type in industrial fields. Therefore the reflective photoelastic experimental hybrid method applied to the fatigue fracture problems is introduced in this research. It is verified that the reflective photoelastic experimental hybrid method is very useful on the determination of crack propagation velocity and stress intensity factor of the fatigue crack and on the separation of stress components in the vicinity of fatigue crack tip etc.

Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics (탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구)

  • 태기호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF