• Title/Summary/Keyword: Fracture stress

Search Result 2,425, Processing Time 0.026 seconds

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

The Characteristic of Residual Stress and Fracture Toughness on The Welded Joint of HT50 by Laser Welding (50kg급 고장력강 레이저용접부의 용접잔류응력 및 파괴인성 특성)

  • Ro, Chan-Seung;Bang, Han-Sur;Ko, Min-Sung;Kim, Sung-Ju;Kim, Ha-Sig
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.93-96
    • /
    • 2003
  • Laser beam welding process is a relatively new process in comparison with arc welding process, but it is expected to apply widely because of the many advantages, and research and development of that process is being progressed actively for the practical use. the application of this welding process has been restricted due to the high initial investment and the need of precise processing against the material, but cost reduction and thick plate welding in high speed have become practial by recent technological development, and this welding process to not only small parts in automobile, machinery and physicochemical field, but also a large structure and pipe line are being applied. In order to utilize this welding process appropriately to a steel structure, the properties of welding residual stresses and fracture toughness in welded joints are to be investigated for relibilty. On this study, after performing the finite element analysis, thermal and residual stress properties have been examined to the general structural steel (HT50) by laser beam welding. Besides, the property of fracture toughness has been investigated by the Charpy impact test and 3-points bending CTOD test carried out in the range of temperature between $-60^{\circ}C$ and $20^{\circ}C$. From the research results it is revealed that the maximum residual stress appears in the center of plate thickness and the fracture toughness is influenced by strength mis-match.

  • PDF

Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test (쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • In the applications of rock mechanics or rock engineering including drill and blast, drilling and mechanical excavation, the fracture toughness is an important factor. Several methods have been proposed to measure the fracture toughness of rocks. In this study, wedge splitting test specimen which is prepared with ease and tested under compression loading was used to obtain mode I fracture toughness of rocks. The equation of stress intensity factor through numerical analysis is proposed from the stress state of crack tip considering both vertical and horizontal loads due to the vertical load acting on the wedge. The validity of the wedge splitting test method was confirmed by comparing the mode I fracture toughness values obtained by the GD and SENB test specimens.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor (응력특이성계수에 의한 이종 접합재료의 강도평가)

  • Jeong, Nam-Yong;O, Bong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper describes laboratory tests carried out to evaluate the influence of class F fly ash (FA) on fracture toughness of plain concretes, specified at the third model fracture. Composites with the additives of: 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsional machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, having an initial circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the critical stress intensity factor $K_{IIIc}$. In order to determine the fracture toughness $K_{IIIc}$ a special device was manufactured.The analysis of the results revealed that a 20% FA additive causes increase in $K_{IIIc}$, while a 30% FA additive causes decrease in fracture toughness. Furthermore, it was observed that the results obtained during fracture toughness tests are convergent with the values of the compression strength tests.

Static and Dynamic Fracture Toughness of Wheelset for High Speed Train (고속철도용 윤축의 정${\cdot}$동적파괴인성 평가)

  • Kwon Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

A STUDY ON NUMERICAL COUPLING BETWEEN MECHANICAL AND HYDRAULIC BEHAVIORS IN A GRANITE ROCK MASS SUBJECT TO HIGH-PRESSURE INJECTION

  • Jeong, Woo-Chang;Jai-Woo;Song, Jai-Woo
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.123-138
    • /
    • 2001
  • An injection experiment was carried ut to investigate the pressure domain within which hydromechanical coupling influences considerably the hydrologic behavior of a granite rock mass. The resulting database is used for testing a numerical model dedicated to the analysis of such hydromechanical interactions. These measurements were performed in an open hole section, isolated from shallower zones by a packer set at a depth of 275 m and extending down to 840 m. They consisted in a series of flow meter injection tests, at increasing injection rates. Field results showed that conductive fractures from a dynamic and interdependent network, that individual fracture zones could not be adequately modeled as independent systems, that new fluid intakes zones appeared when pore pressure exceeded the minimum principal stress magnitude in that well, and that pore pressures much larger than this minimum stress could be further supported by the circulated fractures. These characteristics give rise to the question of the influence of the morphology of the natural fracture network in a rock mass under anisotropic stress conditions on the effects of hydromechanical couplings.

  • PDF

Stress Fracture of the Both Hallucal Sesamoids (제 1족지 양측 종자골의 스트레스 골절)

  • Kim, Yoon-Chung;Ahn, Jae Hoon;Jo, Woo-Lam
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2012
  • Nonunion of the hallucal sesamoid usually occurs after stress fracture. In case of persistent disabling symptoms after non-operative treatment, surgery can be an option. We report a rare case of combined stress fractures of the medial bipartite sesamoid and the lateral sesamoid after overuse. Nonunion of the medial sesamoid developed in spite of cast immobilization, and it was eventually healed with curettage and bone grafting.

  • PDF

A Study on Strength Evaluation of Adhesive Joints(1st Report, Stress Analysis and Fracture Strength of Adhesive Single-Lap Joint) (접착이음의 강도평가에 관한 연구 (제1보 겹치기 접착이음의 응력해석과 파괴강도))

  • 정남용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.667-674
    • /
    • 1992
  • Recently advantages in composite and light weight material technique have led to the increased use of structural adhesives in various industries. In spite of such wide application of the adhesive joints, the evaluation method of fracture strength and design methodology of them, have not been established. In this study finite element method, theoretical and experimental analyses were investigated according to changes of lap length and adhesive for adhesive single-lap joint. As the results, the strength evaluation of adhesive joint by conventional nominal stress, was pointed out inadequate strength evaluation and design method regardless stress singularity, stress distribution and crack propagation in its adhesive layer. Also, it was examined the problems to apply fracture mechanics by means of static and fatigue test.