• Title/Summary/Keyword: Fracture stress

Search Result 2,427, Processing Time 0.03 seconds

Force-based Coupling of Peridynamics and Classical Elasticity Models (페리다이나믹과 탄성체 모델의 연성기법 개발)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In solid mechanics, the peridynamics theory has provided a suitable framework for material failure and damage propagation simulation. Peridynamics is computationally expensive since it is required to solve enormous nonlocal interactions based upon integro-differential equations. Thus, multiscale coupling methods with other local models are of interest for efficient and accurate implementations of peridynamics. In this study, peridynamic models are restricted to regions where discontinuities or stress concentrations are present. In the domains characterized by smooth displacements, classical local models can be employed. We introduce a recently developed blending scheme to concurrently couple bond-based peridynamic models and the Navier equation of classical elasticity. We demonstrate numerically that the proposed blended model is suitable for point loads and static fracture, suggesting an alternative framework for cases where peridynamic models are too expensive, while classical local models are not accurate enough.

Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process (진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰)

  • Kwon, Juhyuk;Park, Hyungkwon;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

A Study on the Characteristic Change of 2.25Cr-1Mo Steel Welds for Various Welding Processes (용접 공정에 따른 2.25Cr-1Mo강 용접이음부의 특성 변화에 관한 연구)

  • BANG HAN-SUR;OH CHONG-IN;BANG HEE-SUN;KIM HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.49-56
    • /
    • 2005
  • In spite of the merits of laser welding being able to obtain the high welding quality such as smaller width of melting and heat affected zone, smaller welding deformation and fine grains of weldment compared to arc welding, laser welding is mainly used in joining of thin steel parts of electronics industry. Laser welding is getting widely used in joining thick plate and special kinds of steel due to its high power. While the arc welding is still applied for 2.25Cr-1Mo steel which is the essential material of atomic power generation equipment, the laser welding is not yet applied despite its high quality. So it has a trial to a special case demanding high welding quality such as atomic power plant. Accordingly, in this research, the mechanical properties of weldments by arc and laser welding were investigated using FEM to confirm the applicability of laser welding to 2.25Cr-1Mo steel. The Charphy test was carried out to understand the effect on the fracture toughness of weldments. The results of examination and test of the mechanical properties showed the validity of this research.

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack

  • Lv, Huayong;Tang, Yuesong;Zhang, Lingfei;Cheng, Zhanbo;Zhang, Yaning
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • It is normal to observe the presence of numerous cracks in coal body. And it has significantly effective on the mechanical characteristics and realistic failure models of coal mass. Therefore, this paper is to investigate the influence of crack parameters on coal body by comprehensive using theoretical analysis, laboratory experiments and numerical simulation through prepared briquette specimens. Different from intact coal body possessing single peak in stress-strain curve, other specimens with crack angle can be illustrated to own double peaks. Moreover, the unconfined compressive strength (UCS) of specimens decreases and follow by increasing with the increase of crack angle. It seems to like a parabolic shape with an upward opening. And it can be demonstrated that the minimum UCS is obtained in crack angle $45^{\circ}$. In terms of failure types, it is interesting to note that there is a changing trend from tensile failure to tensile-shear mixing failure with tension dominant follow by shear dominant with the increase of crack angle. However, the changing characteristics of UCS and failure forms can be explained by elastic-plastic and fracture mechanics. Lastly, the results of numerical simulations are good consistent with the experimental results. It provides experimental and theoretical foundations to reveal fracture mechanism of coal body with non-penetrating single crack further.

Effect of Electrical Resistance Welding on Microstructure and Mechanical Properties of API X70 Linepipe Steel (ERW 용접 전후 API X70 라인파이프강의 미세조직과 기계적 특성 변화)

  • Oh, Dong-Kyu;Choi, Ye-Won;Shin, Seung-Hyeok;Jeong, Han-Gil;Kwack, Jin-Sub;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • Variations in the microstructure and mechanical properties of API X70 steel processed by piping, electrical resistance welding (ERW), and post seam annealing (PSA) are investigated in this study. In the welding zone, some elongated pearlites are formed and grains coarsening occurs due to extra heat caused by the ERW and PSA processes. After the piping, the base metal shows continuous yielding behavior and a decrease in yield and impact strengths because mobile dislocation and back stress are introduced during the piping process. On the other hand, the ERW and PSA processes additionally decreased the impact strength of welding zone at room and low temperatures because some elongated pearlites easily act as crack initiation site and coarse ferrite grains facilitate crack propagation. As a result, the fracture surface of the welding zone specimen tested at low temperature revealed mostly cleavage fracture unlike the base metal specimen.

Comparative Study of Surgical Treatment for Concomitant Ankle Joint Injury in Tibia Shaft Fracture (경골 간부 골절에서 족관절 손상에 대한 수술적 치료의 비교 연구)

  • Jinho Park;Seungjin Lee;Hyobeom Lee;Gab-Lae Kim;Jiwoo Chang;Heebum Hahm
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.87-92
    • /
    • 2023
  • Purpose: Concomitant ankle injuries associated with tibial shaft fractures can affect postoperative ankle joint pain and various postoperative ankle complications. This study compared the clinical outcomes between surgical treatment and conservative treatment of concomitant ankle injuries associated with tibial shaft fractures. Materials and Methods: From January 2015 to June 2020, a retrospective study was conducted on 118 tibia shaft fractures at the orthopedics department of the hospital. Associated ankle injuries were analyzed using plain radiographs, computed tomography (CT), magnetic resonance imaging (MRI), and intraoperative stress exams. The clinical outcomes were compared using the pain visual analog scale (pain VAS), American Orthopaedic Foot and Ankle Society Ankle-Hindfoot score (AOFAS score), and Karlsson-Peterson ankle score (KP score). Results: Seventy-two (61.02%) of the 118 cases were diagnosed with associated ankle injuries. Fifty-six cases underwent surgery for the ankle injury, and 16 cases underwent conservative treatment. The clinical results (according to the pain VAS score, AOFAS score, the KP score) were 1.79±1.26, 94.48±4.03, and 94.57±3.60, respectively, in the surgical treatment group, and 3.00±1.03, 91.06±3.02, and 91.25±3.31, respectively, in the conservative treatment group. Conclusion: Surgical treatment showed better clinical outcomes than conservative treatment in concomitant ankle injury in tibia fractures. Therefore, surgical treatment produces better clinical outcomes than conservative treatment in concomitant ankle injuries in tibia fractures. Hence to improve the clinical outcomes, more attention is needed on ankle joint injury in tibial shaft fractures for selecting suitable surgical treatments for those patients.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.