• Title/Summary/Keyword: Fracture stress

Search Result 2,425, Processing Time 0.03 seconds

Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle (원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가)

  • Kweon, Hyeong Do;Lee, Yun Joo;Kim, Dong Hak;Lee, Do Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

The Effect of Shot Peening on the Bending Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics (파괴역학을 기초로 한 침탄치차의 굽힘강도에 미치는 쇼트피닝(Shot Peening)의 효과에 관한 연구)

  • S.K.Lyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.512-521
    • /
    • 1997
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a car¬burized gear tooth and its application to the fatigue crack propagation problem. The residual stress is estimated based on the assumption that the main cause of residual stress is the volume difference between the case and core due to martensitic transformation in cooling, and the influ¬ence of both the reduction of retained austenite and the strain in the surface layer induced by shot peening are considered. The reliability of the method is examined by comparison with stresses measured by the X-ray diffraction method. The stresses intensity factors are computed by the influence function method and the reduction of the factor due to the residual stress is demonstrat¬ed and discussed based on the fracture mechanics.

  • PDF

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

Chronic Compartment Syndrome and Stress Fracture (만성구획증후군 및 스트레스 골절)

  • Choi, Chang-Hyuk;Baek, Seung-Hoon;Jang, Il-Woong
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • The prevalence of overuse syndrome in the lower extremity including chronic compartment syndrome and stress fracture is increasing with popularity of sports activities. Chronic compartment syndrome is defined as elevation of the interstitial pressure during exertional activities in a closed osseofascial compartment that results in microvascular compromise and operative procedures can be necessary if conservative treatments fail. Stress fracture can be classified as fatigue and insufficiency fracture; stress fracture occurs by repeated strain under abnormal conditions from the patient's activity whereas insufficiency fracture does by those from a process intrinsic to the bone. Most stress fractures occur in the lower extremity, most commonly in the tibial region. Fatigue fractures begin in athletes with the change in their training programs. The radiographic findings are usually diagnostic or at least strongly suggestive and MRI has proven to be a beneficial diagnostic tool for difficult diagnostic cases. Fatigue fractures are treated with a decrease in activity, but surgical procedure may be necessary in those in anterior cortex of the tibial diaphysis.

  • PDF

Ductile Failure Analysis of Defective API X65 Pipes Based on Stress-Modified Fracture Strain Criterion (파괴변형률모델에 기초한 결함이 존재하는 API X65 배관의 연성파괴 해석)

  • Oh, Chang-Kyun;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1086-1093
    • /
    • 2006
  • A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure fur API X65 pipes with gouge defects.

STRESS ANALYSIS OF A HUMAN MANDIBLE UNDER VARIOUS LOADS USING FINITE ELEMENT METHOD (하악골의 부위별 충격시 발생되는 응력에 대한 유한 요소법적 연구)

  • Kim Sung-Rae;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.7-22
    • /
    • 1992
  • The stress distributions on a human mandible for 18 load cases under two different boundary conditions (mouth open and closed), using the three dimensional finite element modeling were studied. Also, the expected fracture loads for each load cases were calculated by using the Von-Mises yield criterion. The model of a mandible with all teeth was composed of 2402 hexahedron elements and 3698 nodes. CAD techniques were used to analyze the 3-dimensional results. The conclusions of this study were as follows: 1. In the mouth open state, the maximum stress occured at the condyle neck; when the lateral load was exerted, the maximum stress occured at the load side condyle. 2. In the mouth closed state, when the loads were exerted on the mandibular body and chin, the maximum stress occured at the loaded area, and when the loads were exerted on the angle and ramus, the maximum stress occured at the condyle neck. 3. The expected fracture loads in each load case were calculated using the Von-Mises yield criterion, and it was confirmed that the mandible in the mouth open state was more easily fractured than that in the mouth closed state, and the expected fracture loads are lesser in the cases that load direction is parallel at mandibular plane than 45°. 4. The magnitudes of the expected fracture loads increased in the order of angle, ramus, body and chin in case of the mouth closed state, while chin, body, angle and ramus in case of the mouth open state. 5. The Von-Mises stress concentration regions analyzed by F.E.M. corresponded well with the results of clinical studies.

  • PDF

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

A NUMERICAL STUDY ON CHARACTERISTICS OF FLUID FLOW AND SOLUTE TRANSPORT IN A SELF-AFFINE VARIABLE-APERTURE FRACTURE UNDER NORMAL COMPLIANCE EFFECT

  • JEONG WOOCHANG;HWANG MANHA;KO ICKHWAN;SONG JAIWOO
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.49-61
    • /
    • 2005
  • This paper presents the numerical study to examine characteristics of fluid flow and solute transport in a rough fracture subject to effective normal stresses. The aperture distribution is generated by using the self-affine fractal model. In order to represent a nonlinear relationship between the supported normal stress and the fracture aperture, we combine a simple mechanical model with the local flow model. The solute transport is simulated using the random walk particle following algorithm. Results of numerical simulations show that the flow is significantly affected by the geometry of aperture distribution varying with the effective normal stress level while it is slightly affected by the fractal dimension that determines the degree of the fracture surface roughness. However, solute transport is influenced by the effective normal stress as well as the fracture surface roughness.

  • PDF