• Title/Summary/Keyword: Fracture roughness

Search Result 189, Processing Time 0.023 seconds

Improvement of Fatigue Strength and Characteristics of Nitrided ICr-lMo-0.25V turbine Rotor Steels at evaluated temperature (질화처리된 1Cr-1Mo-0.25V강의 고온화 피로특성평가)

  • 서창민;황병원;서창희
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.357-362
    • /
    • 2001
  • The purpose of this study is to investigate the effect of nitriding on the fatigue strength and fatigue life of turbine rotor steel (ICr-lMo-0.25V), and acquire data on the fatigue strength of nitrided turbine rotor steel at high temperature (538$^{\circ}C$). Specimens were nitrided with various layer thicknesses (160$\mu$m, 270$\mu$m and 290$\mu$m) using the nitemper method. A microstructure analysis, microhardness test, surface roughness test, and fracture surface analysis were also carried out at room temperature in order to investigate the mechanical properties of the nitrided specimens.

  • PDF

Fabrication and Evaluation of Tantalum Compacts for Sputtering Target Application (스퍼터링 타겟재의 응용을 목적으로 하는 탄탈륨 소결체의 제작 및 평가)

  • Chang, Se-Hun;Choi, Jung-Chul;Choi, Se-Weon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.181-186
    • /
    • 2008
  • In this study, tantalum (Ta) compacts were fabricated in a spark plasma sintering (SPS) process and their microstructure and mechanical properties were investigated. Ta compacts with a density of 99% were successfully fabricated by controlling the sintering conditions of the current and the temperature. The density and hardness were increased as the sintering temperature increased. The $Ta_2C$ compound was observed at the surface of the compacts due to the contact between the Ta powder and graphite mold during the sintering process. The main fracture mode showed a mixed type with intergranular and transgranular modes having some roughness.

Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements (노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성)

  • Lee, Ju Myeong;Baek, Seung Beom;Lee, Kang Hoon;Kim, Jo Soon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

Effect of Cu Containing Solders on Shear Strength of As-soldered BGA Solder Joints (BGA 솔더 조인트의 전단강도에 미치는 Cu 첨가 솔더의 영향)

  • 신창근;정재필;허주열
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.13-19
    • /
    • 2000
  • Shear strengths of BGA solder joints on Cu pads were studied for Cu-containing Sn (0, 1.5, and 2.5 wt.% Cu) and Sn-40Pb (0 and 0.5wt.% Cu) solders, with emphasis on the roles of the Cu-Sn intermetallic layer thickness and the roughness of the interface between the intermetalic layer and solder. The shear strength test was performed for as-soldered solder joints with various soldering reaction times up to 4 min. The addition of Cu to the pure Sn solder results in an enhanced growth of the intermetallic layer whereas the effect of Cu addition to the Sn-40Pb solder is primarily on the reduction of the roughness of the intermetallic/solder interface. The critical thickness of the intermetallic layer for a maximum shear strength depends on the solder materials, which was measured to be ~ 2.3 $\mu\textrm{m}$ for Sn-Cu solders and ~ 1.2 $\mu\textrm{m}$ for Sn-Pb-Cu solders. The shear strength at the critical intermetallic layer thickness seems to increase as the intermetallic/solder interface becomes rougher. This is in accordance with the observation that the sheared fracture occurred initially within the solder tends to shift towards the intermetallic/solder interface as the intermetallic layer grows above the critical thickness.

  • PDF

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

The Characteristics of Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layer (TiN 코팅층 집합조직의 변화에 따른 마찰, 마멸과 내부식 특성)

  • 김희동;김인수;성동영;이민구
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.99-104
    • /
    • 2003
  • TiN coated films show a good mechanical properties, high thermal properties and wear, erosion and corrosion resistance and are widely used as a coating materials in tools, ornaments, parts and semiconductors. In spite of these good properties, the fracture of TiN coated films occur during use. The fracture of TiN thin films is related to their microstructure. Especially, the life of TiN coated layer is related to the texture of the TiN films. One researcher suggested that the corrosion and erosion resistance of the TiN thin films is related to a uniform and dense structure of films. In this study, we studied the relationships between textures and friction coefficient, erosion and corrosion in TiN coated films. The flatness of (115) texture surface of TiN thin films is flatter than that of (111) texture surface. The friction coefficient of (115) texture surface of TiN thin films is similar with that of (111) texture surface. The wear resistance of (115) texture surface of TiN thin films is better than that of (111) texture surface. The erosion and corrosion resistance of (115) texture surface of TiN thin films is better than that of (111) torture surface. As well as texture, the wear, erosion and corrosion of TiN thin films has to consider defects such as pinholes, cracks, surface roughness and open columnar structure. The life of TiN coated products is influenced by the properties of wear, erosion, and corrosion resistance of TiN thin films and is related to texture of TiN coated films, density of pinholes and cracks, density of structure, and surface flatness.

  • PDF

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

Evaluation of Physical Properties of Resin Containing Zinc Nanoparticle. (아연나노입자함유 교정용 레진의 물리적 특성 평가)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.373-379
    • /
    • 2019
  • Polymethyl methacrylate (PMMA), a self-polymerizing resin for removable orthodontic devices, has been used as a dental orthodontic device for many years because of its advantages such as color stability, volume stability, and tissue compatibility. However, such a removable orthodontic device has a disadvantage that the longer the use in the oral cavity due to the low strength of the PMMA fracture of the orthodontic device resin in use. In this study, zinc nanoparticles (ZNP) were mixed with orthodontic PMMA to introduce strength effect. Rectangular samples ($1.4{\times}3.0{\times}19.0mm$) of orthodontic PMMA (0, 0.5, 1.0, 2.0 and 4.0%) containing ZNP were prepared. The finished specimen was tested for three-point bending strength at a speed of 1 mm / min, and the Vickers hardness was measured three times using a hardness tester. The surface roughness was measured with a surface roughness. As a result, the 3-point bending strength did not change significantly (p>0.05). Surface energy increased significantly. As a result, we successfully synthesized ZNP in this study and prepared the dispersed resin specimen for calibration. It will be possible to develop high-density dental orthodontic resins.