• 제목/요약/키워드: Fracture process

검색결과 1,506건 처리시간 0.027초

2차원 절삭에서 발생하는 버에 관한 유한요소 시뮬레이션 (FE-Simulation of Burr Formation in Orthogonal Cutting)

  • 고대철;김병민;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.265-270
    • /
    • 1995
  • In orthogonal cutting a new approach for modeling of burr formation process when tool exits workpiece is proposed. The approach is based on the rigid-plastic FEM combined with the ductile fracture criterion and the element kill method. The approach is applied to simulate a plane strain cutting process. The results of the FEM are compared with those of the experiment. It is shown that the fracture location and fracture angle as well as cutting force can be predicted using the proposed approach with a good correlation to experimental results.

  • PDF

INFLUENCE OF INCLUSION ON INTERNAL DEFECT IN MULTI-STAGE EXTRUSION

  • Yoshida Y.;Fukaya Y.;Yukawa N.;Ishikawa T.;Ito K.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.51-54
    • /
    • 2003
  • Internal defects such as chevron crack occasionally occur in the process of cold extrusion or cold drawing. It is known that the existence and property of inclusion greatly influences the generation of the internal crack. However, in the plastic working field, research about the effect of the inclusion on the fracture is not theoretically analyzed. This paper describes effects of the physical property of inclusion on the internal fracture generation in the process. Prediction of fracture was evaluated by critical damage value calculated by the equation of Cockcroft & Latham and its change by the inclusion physical property such as size and stiffness was investigated.

  • PDF

2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting)

  • 고대철;김병민;고성림
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach

  • Yoon, Taeshik;Jo, Woo Sung;Kim, Taek-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.59-64
    • /
    • 2014
  • Transfer is the critical issue of producing high-quality and scalable graphene electronic devices. However, conventional transfer processes require the removal of an underlying metal layer by wet etching process, which induces significant economic and environmental problems. We propose the etching-free mechanical releasing of graphene using polymer adhesives. A fracture mechanics approach was introduced to understand the releasing mechanism and ensure highyield process. It is shown that the thickness of adhesive and target substrate affect the transferability of graphene. Based on experimental and fracture mechanics simulation results, we further observed that compliant adhesives can reduce the adhesive stress during the transfer, which also enhances the success probability of graphene transfer.

반응결합에 의해 제조된 ZTA복합체의 기계적 특성 (Mechanical Properties of ZTA Composites Fabricated by Reaction Bonding)

  • 장복기;백용혁;문종하;이종호
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.577-582
    • /
    • 1997
  • The mechanical properties of Al2O3-ZrO2 composites fabricated by RBAO(reaction bonded aluminium oxide) process were investigated. As the amount of ZrO2 increased the sinstered density of Al2O3-ZrO2 composites decreased slightly, but wear resistance was enhanced. Bending strength of Al2O3-ZrO2 composites increased in proportion to the amount of al in case of a fixed ZrO2 content. When the amount of Al was fixed bending strength reached its maximum value at 25 wt% ZrO2. The fracture toughness(K1c) increased with increasing content of ZrO2, but decreased with increasing Al amount. On the other hand, the fracture mode of Al2O3-ZrO2 composites was the mixed mode of inter-and transgranular fracture.

  • PDF

A boundary element approach for quasibrittle fracture propagation analysis

  • Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.439-452
    • /
    • 1999
  • A simple numerical scheme suitable for tracing the fracture propagation path for structures idealized by means of Hillerborg's classical cohesive crack model is presented. A direct collocation, multidomain boundary element method is adopted for the required space discretization. The algorithm proposed is necessarily iterative in nature since the crack itinerary is a priori unknown. The fracture process is assumed to be governed by a path-dependent generally nonlinear softening law. The potentialities of the method are illustrated through two examples.

금속성형공정에서 연성파괴예측 (Prediction of Ductile Fracture in Metal Forming Processes)

  • 고대철;이진희;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.183-191
    • /
    • 1994
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and analysis of deformation in metal forming processes. the Cockcroft-Latham criterion is used to estimate whether fracture occurs during the deformation process. The numerical predictions and experimental results of simple upsetting are compared. The proposed scheme successfully predicted the fracture initiation found experimentally.

  • PDF

신선 속도 향상을 위한 건식 신선 공정의 패스스케줄 설계 (Pass Schedule Design for Improvement of Drawing Speed in the Dry Wire Drawing Process)

  • 김영식;김동환;김병민;김민안;박용민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.600-603
    • /
    • 2000
  • In the high carbon steel wire drawing process, the wire temperature increases as the drawing speed is faster in order to increase the production rate in the shop floor. The rapid temperature rise causes the wire fracture in the dry wire drawing process. So, in this paper, the isothermal pass schedule program, which includes the calculation method of wire temperature at each pass, is proposed to prevent the wire fracture due to the temperature rise. Using the isothermal pass schedule program, it is newly proposed the pass schedule design system that prevents the cup-cone defects, improves the elongation of the final products and assures further deformation. As a result, the temperature rise of the wire was decreased and the production rate of the final product is remarkably grown up according to the increase of the final drawing speed than that of the conventional process. Also, the proposed pass schedule design system could give a useful information to the process designer who would design the high carbon steel wire drawing process.

  • PDF

판재 전단 가공에서 금형의 마멸 해석 (Analysis of Tool Wear in Sheet Metal Shearing)

  • 고대철;김태형;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.805-810
    • /
    • 1997
  • In this paper the technique to predict tool were theoretically in the sheet metal shearing process is suggested. The were in sheet metal tool affects the tolerances of final parts, metal flows and costs of processes. In order to predict the tool were the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained form finite element simulation such as node velocities and node forces are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the were rates on these points are accumulated during a process. It is assumed that the wear depth on the tool surface are linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is were is also discussed during the process.

  • PDF

Systematic Study of Paper Breaks in Papermaking Process Using Fracture Mechanics - (1) Evaluation of Fracture Toughness in Wet State

  • Yung B. Seo;Roh, You-Sun
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2002년도 춘계학술발표논문집
    • /
    • pp.76-84
    • /
    • 2002
  • Fracture toughness was considered as one of the good estimates of the paper break tendency of paper web in the press room. Paper break on the paper machine is caused by many factors such as paper machine irregular vibrations, impurities in the fiber furnish, shives, and so on. On the paper machine, the solid content of paper web is changing very rapidly from less than 1% to over 95%. We tried to measure the fracture toughness of paper web at different solid contents for providing the fundamental knowledge of paper break. Stretches of wet web were also measured and compared to the fracture toughness changes. Four different fiber furnishes (SwBKP, HwBKP, ONP, and OCC) were refined to different degrees, and at different solid contents (40%, 60%, 80%, and 95%), their fracture toughnesses were measured. Two fracture toughness measurement methods (essential work of fracture and Tryding's load-widening method) were used, and we found they gave identical results. The stretch curves of the wet webs against the axis of solid contents were very similar to the fracture toughness curves of those.

  • PDF