• Title/Summary/Keyword: Fracture parameter

Search Result 392, Processing Time 0.032 seconds

Method of Estimate of Fracture Probability for Elastic-Plasticity by 2-Parameter Criterion (2-parameter criterion에 의한 탄소성 파괴확률 예측수법)

  • Kim, Tae-Sik;Yoon, Han-Yong;Lim, Myung-Hwan;Chung, Ui-Chung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.226-234
    • /
    • 2003
  • Put Many researcher have made much progress in studying an estimate for fracture probability of brittle materials. However, studies of the fracture probability for the elastic-plasticity have not been made yet. An estimate method for fracture probability which is grafted onto 2-parameter criterion and statistical probability analysis is not only introduced in this study, but also applied to the simple 2dimensional model and carbon steel piping to evaluate the effect of random variable.

  • PDF

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

  • Kumar, Shailendra;Barai, S.V.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.

An Evaluation Method of Probability of Elastic-Plastic Fracture by 2-Parameter Criterion

  • Kim, Tae-Sik;Yoon, Han-Yong;Lim, Myung-Hwan;Jung, Ui-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.55-64
    • /
    • 2004
  • Many researchers have made a lot of progress in studying the evaluation of fracture probability of brittle materials. However, studies of fracture probability for elastic-plasticity have not been made yet. An evaluation method for fracture probability which is grafted onto a 2-parameter criterion and statistical probability analysis is not only introduced in this study, but also applied to the simple 2-dimensional model and carbon steel piping to vealuate the effect of statistical variables.

Development of Cleavage Fracture Toughness Locus Considering Constraint Effects

  • Chang, Yoon-Suk;Kim, Young-Jin;Ludwig Stumpfrock
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2158-2173
    • /
    • 2004
  • In this paper, the higher order terms in the crack tip stress fields are investigated macroscopically for more realistic assessment of structural material behaviors. For reactor pressure vessel material of A533B ferritic steel, effects of crack size and temperature have been evaluated using 3-point SENB specimens through a series of finite element analyses, tensile tests and fracture toughness tests. The T-stress, Q-parameter and q-parameter as well as the K and J-integral are calculated and mutual relationships are investigated also. Based on the evaluation, it has proven that the effect of crack size from standard length (a/W=0.53) to shallow length (a/W=0.11) is remarkable whilst the effect of temperature from -20$^{\circ}C$ to -60$^{\circ}C$ is negligible. Finally, the cleavage fracture toughness loci as a function of the promising Q-parameter or q-parameter are developed using specific test results as well as finite element analysis results, which can be applicable for structural integrity evaluation considering constraint effects.

Comparison with R Curve Behavior fer the K and J Parameter of structural Steel Hot-Rolled Thin Plates (일반구조용강 열간압연 박판의 K와 J 파라미터에 대한 R곡선 거동의 비교)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.812-815
    • /
    • 2002
  • The shape of K-R curve for an ideally brittle material is flat because the surface energy is an unvaried material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. By the way, a general metallic material is nonlinear, structural steel is such. Therefore, the J-R curve form J-integral value instead of K parameters can be used to evaluate elastic-plastic materials with flaws in terms of ductile fracture that can be significant to design. In this paper, R-curve behaviors form K and J parameter is considered for the precise assessment of fracture analysis, in case of JS-SS400 steels.

  • PDF

Evaluation of Fracture Toughness Degradation of CrMoV Rotor Steels Based on Ultrasonic Nonlinearity Measurements

  • Hyunjo Jeong;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2002
  • The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K$\_$IC/) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the 7c consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K$\_$IC/, using the K$\_$IC/ versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.

A numerical framework of the phenomenological plasticity and fracture model for structural steels under monotonic loading

  • He, Qun;Yam, Michael C.H.;Xie, Zhiyang;Lin, Xue-Mei;Chung, Kwok-Fai
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.587-602
    • /
    • 2022
  • In this study, the classical J2 flow theory is explicitly proved to be inappropriate to describe the plastic behaviour of structural steels under different stress states according to the reported test results. A numerical framework of the characterization of the strain hardening and ductile fracture initiation involving the effect of stress states, i.e., stress triaxiality and Lode angle parameter, is proposed based on the mechanical response of structural steels under monotonic loading. Both effects on strain hardening are determined by correction functions, which are implemented as different modules in the numerical framework. Thus, other users can easily modify them according to their test results. Besides, the ductile fracture initiation is determined by a fracture locus in the space of stress triaxiality, Lode angle parameter, and fracture strain. The numerical implementation of the proposed model and the corresponding code are provided in this paper, which are also available on GitHub. The validity of the numerical procedure is examined through single element tests and the accuracy of the proposed model is verified by existing test results.

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

A Modification of the $C^*$ Integral Considering the Effect of Crack Growth (균열 진전의 효과를 고려한 $C^*$ 적분의 수정)

  • 최영환;방종명;염윤용;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 1989
  • A modified $C^{*}$ integral as load parameter in creep fracture is proposed considering the effect of crack growth. It is shown that the parameter does not depend on crack velocity. By performing experiment using STS 304 stainless steel at 600.deg.C the validity of the parameter is investigated. The results show that the parameter is a good measure as a load parameter in creep fracture and the rate of crack tip opening displacement can also be a creep load parameter for STS 304 at 600.deg. C.C.