• Title/Summary/Keyword: Fracture load

검색결과 1,329건 처리시간 0.029초

시료 파괴 시 발생하는 SP에 관한 기초 연구 (The basic study about streaming potential generated by specimen fracture)

  • 김종욱;조성준;박삼규;성낙훈;송영수
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.291-296
    • /
    • 2007
  • We measured potential waveform of load, displacement, micro electric signal generated by rock and mortar fracture using PXI A/D Converter. The rock type used for measurement was used granite, limestone and sandstone, and mortar specimen. we made measuring equipment of physical properties to confirm basic information of physical properties, measured physical properties of rock engineering, electric resistivity and seismic velocity. Potential waveform system was built using PXI A/D Converter and measured potential waveform of load, displacement, micro-electric signal generated using this during uniaxial compressive test by the specimen finished such test of physical properties. Using the saturated rock and mortar specimen, micro electric signal increased, and It didn't increase a signal in dried rock and mortar specimen according as load and strain rate increases. But signal also increased in saturated or dried specimen in case of sandstone. It was possible to check the close correlation relationship the signal and fracture behavior by a compressive load as the signal of fracture position was increased bigger than the other position. It was also possible to check the correlation relationship between physical properties and micro geo-electric signal.

  • PDF

중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성 (Fracture Properties of High Strength Concrete Disk with Center-Crack)

  • 진치섭;김희성;박현재;김민철
    • 콘크리트학회논문집
    • /
    • 제13권2호
    • /
    • pp.161-167
    • /
    • 2001
  • RILEM위원회가 제시한 3점 휨 시험은 하중-변위곡선 형상이 불규칙하고 안정된 균열 발생 후 최종 균열이 발생하기 때문에 정확한 파괴인성을 구하는 것은 어렵다. 그러나 디스크 시험은 균열개시하중만 알면 쉽게 파괴인성을 구할 수 있다. 따라서, RILEM위원회가 제시한 3점 휨 시험보다 파괴인성 계산의 편리함을 보이기 위해 중앙에 노치가 있는 고강도 콘크리트 디스크를 실험하여 실험결과와 유한요소해석에 의한 결과를 비교하였다. 또한 실험에 의한 파괴 포락선과 이론에 의한 파괴 포락선도 비교하였으며, 콘크리트 강도수준에 따른 파괴특성의 차이를 나타내었다. 본 연구의 결과는 다음과 같다 유한요소해석과 실험결과를 비교해 볼 때, 최대 원주방향 인장응력 이론을 적용한 유한요소해석은 실험결과와 좋은 일치를 보였다. 그리고 콘크리트의 강도수준에 따른 파괴특성의 차이는 균열개시하중과 파괴인성 등에 영향을 끼치지만 최종 균열전파각의 변화에는 큰 영향이 없었다. 또한, 최대 원주방향 인장응력이론에 의한 파괴 포락선과 실험에 의한 포락선이 일치하지 않는 이유는 콘크리트에서 혼합모드와 면내전단모드(모드 II) 파괴를 유발하는 데 필요한 에너지량이 크기 때문이라고 판단된다

Systematic Study of Paper Breaks in Papermaking Process Using Fracture Mechanics - (1) Evaluation of Fracture Toughness in Wet State

  • Yung B. Seo;Roh, You-Sun
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2002년도 춘계학술발표논문집
    • /
    • pp.76-84
    • /
    • 2002
  • Fracture toughness was considered as one of the good estimates of the paper break tendency of paper web in the press room. Paper break on the paper machine is caused by many factors such as paper machine irregular vibrations, impurities in the fiber furnish, shives, and so on. On the paper machine, the solid content of paper web is changing very rapidly from less than 1% to over 95%. We tried to measure the fracture toughness of paper web at different solid contents for providing the fundamental knowledge of paper break. Stretches of wet web were also measured and compared to the fracture toughness changes. Four different fiber furnishes (SwBKP, HwBKP, ONP, and OCC) were refined to different degrees, and at different solid contents (40%, 60%, 80%, and 95%), their fracture toughnesses were measured. Two fracture toughness measurement methods (essential work of fracture and Tryding's load-widening method) were used, and we found they gave identical results. The stretch curves of the wet webs against the axis of solid contents were very similar to the fracture toughness curves of those.

  • PDF

Systematic Study of Paper Breaks in Papermaking Process Using Fracture Mechanics - (1) Evaluation of fracture Toughness in Wet State

  • Seo, Yung-B;Roh, You-Sun
    • 펄프종이기술
    • /
    • 제33권5호
    • /
    • pp.37-44
    • /
    • 2001
  • Fracture toughness was considered as one of the good estimates of the paper break tendency of paper web in the press room. Paper break on the paper machine is caused by many factors such as paper machine irregular vibrations, impurities in the fiber furnish, shives, and so on. On the paper machine, the solid content of paper web is changing very rapidly from less than 1% to over 95%. We tried to measure the fracture toughness of paper web at different solid contents for providing the fundamental knowledge of paper break. Stretches of wet web were also measured and compared to the fracture toughness changes. Four different fiber furnishes (SwBKP, HwBKP, ONP, and OCC) were refined to different degrees, and at different solid contents (40%, 60%, 80% and 95%), their fracture toughnesses were measured. Two fracture toughness measurement methods (essential work of fracture and Tryding's load-widening method) were used, and we found they gave identical results. The stretch curves of the wet webs against the axis of solid contents were very similar to the fracture toughness curves of those.

  • PDF

감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가 (Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load)

  • 안석환;남기우;김선진;김진환;김현수;도재윤
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

GFRP 복합재료의 층간파괴인성치에 관한 연구 (A Study on the Interlaminar Fracture Toughness of Glass Fiber Reinforced Plastic Comosites)

  • 박기호
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.410-420
    • /
    • 1999
  • The value of the mode I interlamina fracture toughness, GIC, is calculated by experimental compliance method, modified compliance method and beam theory. The value of the mode II interlamina fracture toughness, GIC, is evaluated by beam method, theory beam theory and compliance method. This paper describes the effect of load pint displacement rate and speicimen geometries for mode I and II interlaminar fracture toughness of glass fiber reinforced plastic composites by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. For the load point displacement rate of increases whereas the value of 2,6 and 10 mm/min the value of GIC decrease as load point displacement rate increases whereas the value of GIC is found to be no significant effect. The value of GIC decreases as initial crack length increases. The fractured surface of the DCB and ENF samples are examined by scanning electron microscopy (SEM).

  • PDF

콘크리트의 압축강도에 따른 파괴특성간 연구 (A Study on fracture parameters with compressive strength of concrete)

  • 윤요현;전철송;최신호;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.659-664
    • /
    • 2001
  • Concrete has a different fracture mechanism from the other materials, with the existing of FPZ at the ahead of its cracks, and represents the softening curves at the post-peak load in the load-displacement diagrams. So, it can transmit the stress at the post-peak load. This can not be understood with the traditional concept of strength, but with the theory based energy approach. For the purpose of this study is mainly used RILEM(1990 TC89-FMT) and TPM, and the concrete fracture properties have been evaluated according to the its compressive strength. The evaluated fracture properties is $G_{F}$, $a_{c}$, $K_{IC}$ , CTODc, Q etc.c.c.

  • PDF

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fractrue Toughness for very Brittle Materials)

  • 이억섭;한유상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.