• Title/Summary/Keyword: Fracture load

Search Result 1,330, Processing Time 0.021 seconds

Isolated Fracture Dislocation of the Tarsal Navicular -A case report- (족부 주상골의 단독 골절 탈구 -증례 보고-)

  • Lee, Young-Kuk;Ahn, Won-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.3 no.1
    • /
    • pp.58-61
    • /
    • 1999
  • Isolated fracture dislocation of the tarsal navicular bone is extremely rare. The mechanism of injury of this fracture dislocation is known as a horizontal or axial load on plantar flexed foot. Closed or open reduction is recommended for displaced navicular fracture. We report one case of isolated fracture dislocation of the tarsal navicular which was treated with closed reduction and percutaneous K-wire fixation.

  • PDF

Evaluation for Fracture Toughness with Considering the Thermal Energy (열에너지를 고려한 파괴인성치 고찰)

  • Park, Jae-Sil;Kim, Jeong-Pyo;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.9-15
    • /
    • 2001
  • In the case of a crack propagation, a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile test was carried out using thermocouples to monitor the variation of temperature with SA516 Gr70. The experimental results show that the temperature of specimen was increased $3.6^{\circ}C$ at static load condition. And the thermal effect was investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip ws lower about 19.3% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Yoon Sung-Ho;Lee Eun-Dong;Heo Kwang-Soo;Jung Jeong-Cheol;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material

  • Kim, Wha-Jung;Lee, Jae-Min;Kim, Ji-Sik;Lee, Chang Joon
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.547-555
    • /
    • 2012
  • Measuring crack length in concrete fracture test is not a trivial problem due to high speed crack propagation. In this study, mechanoluminascent (ML) material, which emits visible light under stress condition, was employed to visualize crack propagation during concrete fracture test. Three-point bending test was conducted with a notched concrete beam specimen. The cracking images due to ML phenomenon were recorded by using a high speed camera as a function of time and external loadings. The experimental results successfully demonstrated the capability of ML material as a promising visualization tool for concrete crack propagation. In addition, an interesting cracking behavior of concrete bending fracture was observed in which the crack propagated fast while the load decreased slowly at early fracture stage.

Evaluation for Fracture Toughness with Considering the Thermal Energy (열에너지를 고려한 파괴인성치 고찰)

  • 김정표;임창현;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • In the case of a crack propagation a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile tests were carried out using thermocouples to monitor the variation of temperature. The experimental results show that the temperature of specimen was increased $5.4^{\circ}C$ at static load condition. And the thermal effect is investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip is lower about 16.9% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Fracture and dislocation of the four lateral metatarsophalangeal joints - A case report (외측 4개 중족 족지 관절의 골절-탈구 - 증례보고 -)

  • Yim, Soo-Jae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • Fracture and dislocation of the four lateral metatarsal head and neck at the metatarsophalangeal joint, which may be associated with a hyperextension force, axial load, and additional rotating force, has rarely been reported. The patient was a 32-year-old man who sustained the injury in a motor vehicle accident. Manual reduction was easily performed but maintenance of reduction was difficult, due to the associated fractures of the metatarsal necks. Thus percutaneous internal fixation with Kirshner's wires was required.

  • PDF

Finite element fracture reliability of stochastic structures

  • Lee, J.C.;Ang, A.H.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • This study presents a methodology for the system reliability analysis of cracked structures with random material properties, which are modeled as random fields, and crack geometry under random static loads. The finite element method provides the computational framework to obtain the stress intensity solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertainties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach. Numerical examples are given for the case of random fracture toughness and load.

Effects of Crack Velocity on Fracture Resistance of Concrete (콘크리트의 파괴저항에 대한 균열속도의 영향)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.52-59
    • /
    • 2003
  • Tests of concrete CLWL-DCB specimens had been conducted with displacement-controlled dynamic loading. The crack velocities for 381mm crack extension were 0.80 mm/sec ~ 215m/sec. The external work and the kinetic and strain energies were derived from the measured external load and load-point displacement. The fracture resistance of a running crack was calculated from the fitted curves of the fracture energy required for the tests. The standard error of the fracture energy was less than 3.2%. The increasing rate of the fracture resistance for 28 mm initial crack extension or micro-cracking was relatively small, and then the slope of the fracture resistance increased to the maximum value at 90∼145 mm crack extension depending on crack velocity. The maximum fracture resistance remained for 185 mm crack extension, and then the faster crack velocity showed the faster decreasing rate of the maximum fracture resistance. The maximum fracture resistance increased proportionally to the logarithm of the crack velocity from 142 N/m to 217 N/m when the crack velocity was faster than 0.273 m/sec. The maximum fracture resistance of the fastest tests was similar to the average fracture energy density of 215 N/m. To measure the fracture resistance of concrete, the stable crack extension should be larger than 90∼145 mm depending on crack velocity.