• Title/Summary/Keyword: Fracture intensity

Search Result 700, Processing Time 0.025 seconds

Finite Element Analysis of Laser Class Bonding Process (레이저 유리 접합 공정의 유한요소해석)

  • Hong, Seok-Kwan;Kang, Jeong-Jin;Byun, Cheol-Woong
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.10-15
    • /
    • 2008
  • This study is aimed to analyse the laser glass bonding process numerically. Due to the viscoelastic behaviour of glass, the extremely large deformation of the frit seal is resulted continuously over the transition temperature, so that the thermal boundary condition be changed in the entire calculation process. The commercial FEM algorithm is restrictively able to remesh the large geometrical boundary shape and to adapt the boundary conditions simultaneously. According to our manual adaptation of increasing the laser line intensity to 700 mW/mm, it is possible to estimate the thermal glass bonding process under the fracture stress in principle. But it should be studied further in the case of high laser line intensity.

  • PDF

The Influence of Repeated Loading Cycles on Strength Ratio of Carbon/Epoxy Composite Laminates (Carbon/Epoxy 복합재료 적층판의 반복하중에 따른 강도계수의 변화에 대한 연구)

  • Kim, Doo-Hwan;Kim, Young-Feel
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.19-24
    • /
    • 2009
  • Currently the technique of composite material field is developed day by day. The many kinds industrial facility and life articles are coming to make with the composite material. But still the engineering works field the building and the bridge uses the material which is old era and is making. To here there is a various problem but the biggest problem the theory of the composite material is complicated too and means that the application is been delayed about constructive structure. When the composite material is used widely from constructive field, too with difficult theory in technical expert and easily with the research for the experiment data accumulation is necessary. The tensile and fatigue test of the carbon/epoxy which is a high-class composite material led from the present paper consequently and the change of the intensity coefficient which follows in repeated load researched.

Synthesis of Epoxidized Soybean Oil (ESO) and its Blends with Tetrafunctional Epoxy Resins (Epoxidized soybean oil(ESO)의 합성 및 4 관능성 에폭시 수지/ESO 블렌드 시스템의 물성)

  • Lee, Jae-Rock;Jin, Fan-Long;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • In this work. a potential inexpensive epoxy resin. epoxidized soybean oil (ESO) was synthesized and applied as a toughening agent for 4.4'-tetradiglycidyl diaminodiphenyl methane (TGDDM). The chemical structure of ESO was characterized by FT-IR, $^1H NMR, and ^{13}C NMR$ spectroscopy. The curing behaviors. thermal stabilities. fracture toughness. and flexural strength of TGDDM/ESO blend systems were investigated by using the dynamic DSC. thermogravimetric analysis (TGA). and flexural tests. The thermal stabilities of TGDDM/ESO blend systems were decreased with increasing ESO contents. whereas the critical stress intensity factor ($K_{IC}$) and flexural strength ($\sigma_f$) were increased with ESO contents up to 10 wt% ESO.

  • PDF

Crack Growth Behavior of Tensile Overload for Small Load Amplitude (하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 유헌일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy for small tensile overload under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investigated by compliance method. The applied initial stress ratios are R=-0.5 R=0.0 and R=0.25 Crack length, effective stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc, are inspected with fracture mechanics estimate.

  • PDF

A Study on the Finite Element Analysis of J-Integral (J-적분의 유한요소해석에 관한 연구)

  • 한문식;김상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 1982
  • One of the important subjects in fracture mechanics study is to analyze the stress intensity factor. In this paper, the stress intensity factor in Mode I ($K^{I}$) is determined by J-integral using the finite element method. In this investigation, the values of $K^{I}$ are computed for distorted and undistorted elements of 8-noded isoparametric finite elements. The numerical results obtained are summarized as follows. (1) Through a relatively coarse mesh, the $K^{I}$ values obtained by this method are fairly good accuracy. (2) The $K^{I}$ values for the distorted elements appear to be better than those obtained using the undistorted mesh. (3) Within the limits of these analyses, the solutions obtained through the integral paths in the medium region of elements approach to the analytical solution most closely.

  • PDF

A Study on Fracture Mechanism of Torsion-Mounted Type Turbine Blade (비틀림 마운트형 터빈 블레이드의 파괴기구에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Jang, Deuk-Yul;Cho, Seoks-Woo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.585-590
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

Fracture Mechanics Analysis of the Steam Generator Tube after Shot Peeing (숏피닝 증기 발생기 전열관의 파괴역학적 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1180-1185
    • /
    • 2003
  • One of the main degradation of steam generator tubes is stress corrosion cracking induced by residual stress. The resulting damages can cause tube bursting or leakage of the primary water which contained radioactivity. Primary water stress corrosion crack occurs at the location of tube/tubesheet hard rolled transition zone. In order to investigate the effect of shot peening on stress corrosion cracking, stress intensity factors are calculated for the crack which is located in the induced residual stress field.

  • PDF

Fracture Mechanics Analysis of Multiple Load Path Plate (다중 균열 보강 판재에 관한 파괴 역학적 해석)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.109-115
    • /
    • 2001
  • The compliance approach to the problem of load sharing between a cracked plate and multiple plate used to bridge the crack. The theory is validated by using calculated stress intensity factors for the multiple load path plate to reduce experimentally observed growth rate to a common base. Calculations are them made on the effect of multiple load path plate width on fatigue crack retardation in order to demonstrate the predictive capability of the technique.

  • PDF

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

FEM Analysis of Effect of Shot Peening for Stress Corrosion Cracking at Welded Part (용접부 응력부식균열 방지를 위한 쇼트피닝 효과의 유한요소 해석)

  • NAM KI-Woo;AHN SEOK-WHAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.239-241
    • /
    • 2004
  • Stress intensity factor of semi-circular crack front was calculated by FEM, and also allowable crack size which doesn‘t break out the fracture by SCC in residual stress field of STS materials. Allowable crack size was increased with compressive residual stress provided by shot peening on material surface, and with magnitude of compressive residual stress for depth direction.

  • PDF