• Title/Summary/Keyword: Fracture damage

검색결과 798건 처리시간 0.024초

Chopart 관절 골절 및 탈구: 3예 보고 (Chopart Joint Fracture and Dislocation: A Report of Three Cases)

  • 김성현;서재완;박현우
    • 대한족부족관절학회지
    • /
    • 제22권3호
    • /
    • pp.120-126
    • /
    • 2018
  • Chopart joint fracture and dislocation are rare injuries compared with other joint injuries with various clinical manifestations. Moreover, there is a lack of knowledge of the radiological findings of the joints, and thus, the extent of joint ligament damage may be underestimated, leading to improper treatment. This paper reports three cases of Chopart joint injury and seeks to reconsider the importance of Chopart joint evaluation and treatment.

Determining a novel softening function for modeling the fracture of concrete

  • Hossein, Karimpour;Moosa, Mazloom
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.351-374
    • /
    • 2022
  • Softening function is the primary input for modeling the fracture of concrete when the cohesive crack approach is used. In this paper, based on the laboratory data on notched beams, an inverse algorithm is proposed that can accurately find the softening curve of the concrete. This algorithm uses non-linear finite element analysis and the damage-plasticity model. It is based on the kinematics of the beam at the late stages of loading. The softening curve, obtained from the corresponding algorithm, has been compared to other softening curves in the literature. It was observed that in determining the behavior of concrete, the usage of the presented curve made accurate results in predicting the peak loads and the load-deflection curves of the beams with different concrete mixtures. In fact, the proposed algorithm leads to softening curves that can be used for modeling the tensile cracking of concrete precisely. Moreover, the advantage of this algorithm is the low number of iterations for converging to an appropriate answer.

연속체 손상역학을 이용한 용접구조물의 수치피로시험기법 (Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics)

  • 이치승;김영환;김태우;유병문;이제명
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

항공기 복합재 구조에 적용된 두꺼운 적층판의 손상 허용 기준 평가 (Investigation on Damage Tolerance of Thick Laminate for Aircraft Composite Structure)

  • 박현범;공창덕;신철진
    • Composites Research
    • /
    • 제25권4호
    • /
    • pp.105-109
    • /
    • 2012
  • 최근 국내에서 미국과 상호항공안전협정 체결을 위한 소형 항공기가 연구 개발 중이다. 연구 대상 항공기는 경량화 하여 연료 절감을 위해 전기체 복합재료가 적용되었다. 그러나 복합재 구조는 외부의 충격 손상에 취약한 구조이다. 따라서 항공기 구조물은 충격 손상에 대한 압축 파손 강도를 고려하여 손상 허용 설계가 반드시 수행되어야 한다. 이는 복합재 구조 항공기 인증에 매우 중요한 요소이다. 본 연구에서는 항공기 복합재 구조에 적용된 두꺼운 적층판에 대한 손상 허용 연구를 수행하였다. 두꺼운 적층판의 세 가지 형태인 손상이 없는 시편, 구멍 손상 및 충격 손상이 적용된 시편의 압축 하중 하에서 손상 허용 기준이 평가되었다.

Cumulative Damage Theory in Fatigue of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • 제28권4호
    • /
    • pp.182-190
    • /
    • 2015
  • The phenomenological evolution laws of damage can be defined either based on residual life or residual strength. The failure of a specimen can be defined immediately after or before fracture. The former is called in this paper by "failure defined by approach I" and the latter "failure defined by approach II." Usually at failure there is a discontinuity of loading variables and, because of this, damage at failure is discontinuous. Therefore the values of damage at failure by two different approaches are not the same. Based on this idea the sequence effects of the phenomenological evolution law of damage given by $dD/dN=g(D)f({\Phi})$ were studied. Thin-walled graphite/epoxy tubes consisting of four of $[{\pm}45]_s$ laminates were used for the experimental study of sequence effects and the effects of mean stress on fatigue life. It was found that the sequence effects in two step uniaxial fatigue for $[{\pm}45]_s$ graphite/epoxy tubular specimen showed that a high-low block loading sequence was less damaging than a low-high one.

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

포장 프로파일이 포장 피로수명에 미치는 영향 분석 (Effect of Surface Profiles on Pavement Fatigue Life)

  • 박대욱;안덕순;권수안
    • 한국도로학회논문집
    • /
    • 제11권2호
    • /
    • pp.167-174
    • /
    • 2009
  • 본 논문에서는 아스팔트 콘크리트 포장의 표층 프로파일과 차량특성인 차량속도와 현가장치를 다르게 하여 트럭 시뮬레이션 프로그램을 통한 동적하중을 분석하였다. 다양한 포장 상태의 프로파일을 입력하여 동적하중을 분석하였으며 프로파일, 차량의 현가장치, 차량속도에 따른 동적하중 변화를 분석하였다. 포장 거칠기가 증가할수록 동적하중이 증가하였으며, 속도가 증가할 수 록 동일한 포장 거칠기 하에서 동적하중이 증가하였다. Walking beam 현가장치가 Air spring 현가장치에 비해 더 큰 동적하중을 보였다. 동적하중 공분산을 이용하여 포장파손 지수를 결정하였으며, 동적하중 공분산과 신뢰도, 아스팔트 혼합물의 파괴매개변수가 증가할 수록 포장파손지수도 증가하였다. 본 연구의 결과를 이용하여 차량속도와 표층 아스팔트 혼합물 파괴특성에 근거한 포장 평탄성 규정에 이용할 수 있으며, 아스팔트 콘크리트 포장 시공 후 포장 평탄성에 근거한 지불규정에 효과적으로 사용할 수 있다고 판단된다.

  • PDF

음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구 (Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements)

  • 옹장우;문순일;정현조
    • 비파괴검사학회지
    • /
    • 제13권3호
    • /
    • pp.7-13
    • /
    • 1993
  • AISI 4130 금속재를 사용한 균열 컴팩터 인장시편의 파괴거동이 음향방출(AE) 및 초음파 C-scan을 이용하여 조사되었다. 모든 시편들을 특정 수준의 하중까지 증가시키면서, 크랙 개구변위 (COD)와 더불어 여러가지의 음향방출 인자들을 얻었다. 크랙 선단의 크랙 개구변위와 손상(소성)역을 계산하기 위하여 탄소성 유한요소 해석이 수행되었다. 펄스-반사, 침수형으로한 초음파 C-scan은 손상역 크기와 상사시키기 위하여 행해졌다. 유한요소 해석 결과와 측정된 크랙개구변위는 만족할 정도로 일치하였다. 음향방출 결과에서, 시험시편들은 연성거동을 나타내었다. 총 사상수대 크랙 개구변위의 기울기는 크랙 개시점을 결정하는 데에 유용하였다. 예비 시험적인 C-scan 화상은 손상역의 초음파 진폭변화를 보여주었고, 손상역의 형상 및 크기가 유한요소 결과와 정성적으로 부합되었다. 손상역 크기에 관한 추가적인 연구가 요약되었다.

  • PDF

알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load)

  • 김종성;윤명진;최성종;조현덕
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

Alloxan 투여 가토(家兎)에 대한 골절치유 실험 (Studies on the Fracture Healing in the Alloxan treated Rabbits)

  • 김성준
    • 대한약리학회지
    • /
    • 제7권1호
    • /
    • pp.53-65
    • /
    • 1971
  • It is well known that diabetes mellitus is associated with metabolic derangements, such as hyper-glycemia, ketosis, glycosuria, and also widespread alterations in the blood vessels, kidneys, eyes, peripheral nerves and heart. It is also recognized that healing of skin wound is delayed in diabetics. In bone, according to Aegerter, osteopenia develops in diabetes mellitus and it is chiefly ascribed to overutilization of protein. Shim claims that total blood flow to the entire skeletal system is approximately 4 to 8 percent of resting cardiac output and blood supply to the skeletal system would be decreased on account of secondary arteriosclerotic changes in the diabetics. An adequate blood supply is an essential factor in the healing process of fracture, and disturbed blood flow, either local or systemic, will invariably delay union of the fragments or the fragments from being fused. As the author has encountered several cases of diabetics in whom healing of fracture was delayed or incomplete, this experimental study was undertaken to elucidate the effects of hyperglycemia and diabetes mellitus on the healing process of fracture. In this experiment adult albino rabbits, weighing about 2 kg. were used and divided into 6 groups. The femur of each animal was fractured surgically, and then the healing process of fracture was periodically checked by radiography at an interval of one week for a period of 6 weeks. Thereafter, all the rabbits were killed to obtain tissue preparation of the femur. The experimental groups were as follows; 1) Control group: Six rabbits sustained a surgical fracture to the femur, without being given any other treatment or drug. 2) Alloxan-treated group: For inducing diabetes, alloxan was given intravenously to 17 rabbits in various dose as follows; to 7 of them 40 mg/kg, to 6 rabbits 80 mg/kg and to 4 rabbits 120 mg/kg of body weight, respectively. 3) Insulin-treated group: Protamine-zinc insulin was injected subcutaneously to each of 6 rabbits in a daily dose of 1 unit per kilogram of body weight. 4) Group treated with insulin after alloxan: Four rabbits were given 80 mg of alloxan once and than 1 unit of insulin per kilogram of body weight daily. Another 5 rabbits were injected 1 unit of insulin per kg of body weight daily following administration of alloxan in a dose of 120 mg/kg. 5) Homotransplantation group: Following intravenous injection of alloxan in a dose of 120 mg/kg, 10 rabbits underwent homotransplantation of a short bone segment to the femur. Five of them were subsequently given 1 unit/kg of insulin daily. 6) Sugar-treated group: six rabbits were fed $15{\sim}20$ gm of sugar daily throughout the period of experiment. The results obtained are summarized as follows; 1. Blood sugar level and damage to the pancreatic islet increased proportionately when alloxan was given to the rabbits in various doses. No appreciable change could be observed in the islets when the blood sugar level was altered by either oral administration of sugar or subcutaneous injection of insulin. 2. Comparing with the control group, healing of fracture was delayed in the alloxan-treated group, while callus formation and periosteal reaction were shown to be more prominent in this group and subsequently, the ultimate osseous tissue formed at the fracture site was significantly smaller in amount and less compact. These findings were more marked as the amount of alloxan increased. 3. Administration of insulin prevented the delay in healing process of fracture in the rabbits with alloxan-induced hyperglycemia. In this case, the course and progression of fracture healing were almost similar to those of control group. 4. Union between the host bone and the fragment transplanted from other rabbit of the same species was more delayed in the group treated with alloxan alone than in the group to which insulin was administered after development of alloxan-induced diabetes. In both groups periosteal new bone developed from the ends of the host bone, above and below the transplanted fragment, and directly fused with failure of periosteal callus to bridge the adjacent ends of the host bone and the transplanted fragment. 5. The healing process of fracture was not inhibited by alteration in blood sugar level when the blood sugar was abnormally increased by excessive sugar intake or lowered by administration of insulin alone. The healing of fracture in these groups progressed similarly as in the control group. In brief summary, it appears that the healing process of fracture would be definitely disturbed in diabetic state brought about by damage to the pancreatic islet. As such an inhibition could be overcome with insulin, it seems that insulin plays an important role in healing of fracture, but alteration in blood sugar level alone does not modify healing process of fracture to significant degree.

  • PDF