• 제목/요약/키워드: Fracture damage

검색결과 795건 처리시간 0.023초

흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가 (Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

구상흑연주철 극저사이클 피로파괴의 시뮬레이션 구현 (Simulation of Extremely Low Cycle Fatigue Fracture in Ductile Cast Iron)

  • 김민건;임복규
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1573-1580
    • /
    • 2006
  • In this study, fatigue tests were carried out under push-pull loading condition using spheroidal graphite cast iron in order to clarify the internal fatigue fracture mechanism in an extremely low cycle fatigue regime. It is found that a successive observation of internal fatigue damage it is found that the fracture processes go through three stages, that is, the generation, growth and coalescence of microvoids originated from debonding of graphite-matrix interface. It is also found that the crack which is initiated from the void propagates by coalescence of neighboring cracks and the fatigue crack growth rate can be expressed in form of the Manson-Coffin rule type. In this paper, quantitative analyses of fatigue properties for realization of simulation about fatigue life evaluation are also presented.

보조동력장치 엔진 Base의 피로수명 예측 및 충격파손에 관한 연구 (A Study on Prediction of Fatigue Life and Shock Fracture for the Engine Base of Auxiliary Power Unit for Tracked Vehicle)

  • 이상범;정경택;신재호;장환영;서정세
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.86-92
    • /
    • 2008
  • This paper is to investigate the behavior of linear static structure stress, the fatigue and experimental shock fracture far engine base in the Auxiliary Power Unit to resolve its restricted electrical power problem. The shock fracture test was experimentally made under MIL standard criteria. The numerical results by finite element method had a good agreement with those from the shock test. The design data of predicting the fracture at the initial crack and the damage behavior of structure with shock and vibration load in the battle field can be obtained from shock test. In the functional shock test, the crack at the side parts of the engine base was found at peak acceleration of 40g.

말똥가리의 상완골 골절에 있어서 외부고정술 일례 (A Case of External Fixation for Humeral Fracture in a Common Buzzard (Buteo buteo))

  • 김영준;김수호;권민정;박철민;이항;신남식
    • 한국임상수의학회지
    • /
    • 제21권4호
    • /
    • pp.409-412
    • /
    • 2004
  • Authors introduce a case of successful orthopedic surgery for humeral fracture of Common buzzard (Buteo buteo). The bird, juvenile male, was rescued due to illegal gun shot in Yeoncheon-Gun, Kyonggi-Do. The external skeletal fixation (ESF) with intramedullary pinning (Tie-in method) using Imex clamps was chosen for this fracture case. The common buzzard was anesthetized with hand made face mask and Isoflurane. In particular, the rescued bird was needed rehabilitating procedures, such as flight training or physical exercise for their survivals in wild habitats. The injured buzzard is successfully recovered without any damage to ligaments and nerves after 6 weeks.

압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (II) -수명향상을 위한 국산과 외산소재의 물성과 파괴특성비교- (Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (II) -Comparison of properties between domestic and French-made products-)

  • 서창민;서민수;오상엽
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.40-46
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditions ($570^{\circ}C$) to analyze the cause and prevent the roll shell steel's brittle fracture and its damage.

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.

비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가 (Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics)

  • 권석진;이동형;서정원;권성태
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

손상 허용 설계를 적용한 복합재 날개의 정하중 시험 (Static Test of a Composite Wing with Damage Tolerance Design)

  • 박민영
    • 한국항공우주학회지
    • /
    • 제46권6호
    • /
    • pp.471-478
    • /
    • 2018
  • 본 연구에서는 복합재 날개 구조물에 손상허용설계를 적용하고 이를 입증하기 위한 정하중 시험을 수행하였다. 복합재 날개 구조의 정적강도를 입증하기 위하여 5 조건의 설계 제한하중 시험과 3 조건의 설계 극한하중 시험을 수행하였다. 그 다음으로 손상허용 설계를 입증하기 위하여 관련 규정에 따라서 복합재 주익 주요 취약부위에 BVID 10개, Open hole 11개를 생성 후, 설계 극한하중 시험과 파단시험을 실시하였다. 날개 주요 부위의 변위 및 변형률 시험 결과는 구조해석 결과와 비교적 잘 일치하였으며, 파단시험의 최초 파단부위도 최소안전여유를 갖는 부위에서 발생하여 구조해석 모델 및 강도평가 결과가 실제 구조의 정적 거동과 유사함을 확인하였다.

FRP(SMC재)의 균열成長 擧動과 破壞인성 평가에 관한 연구 (A study on fracture toughness evaluation and crack growth behavior in FRP (SMC material))

  • 김정규;박진성
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.472-478
    • /
    • 1989
  • 본 연구에서는 FRP의 파괴인성평가를 위한 기초적인 자료를 얻기 위하여 FRP 중에서도 널리 사용되고 있는 SMC재를 준비하고 3점 굽힘시험을 실시하여 노치선단에서의 손상거동 및 균열진전저항유선으로부터 안정파괴개시점을 검토하였다.

유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구 (Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method)

  • 홍석무;현홍철;황지훈
    • 소성∙가공
    • /
    • 제23권3호
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.