• Title/Summary/Keyword: Fracture Strain

Search Result 1,026, Processing Time 0.022 seconds

Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation (HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측)

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Kim, Younghyn;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.82-93
    • /
    • 2019
  • In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect (고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향)

  • 이지훈;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel (API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발)

  • Oh Chang-Kyun;Kim Yun-Jae;Park Jin-Moo;Baek Jong-Hyun;Kim Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

Effect of strain rate and stress triaxiality on fracture strain of 304 stainless steels for canister impact simulation

  • Seo, Jun-Min;Kim, Hune-Tae;Kim, Yun-Jae;Yamada, Hiroyuki;Kumagai, Tomohisa;Tokunaga, Hayato;Miura, Naoki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2386-2394
    • /
    • 2022
  • In this paper, smooth and notched bar tensile tests of austenitic stainless steel 304 are performed, covering four different multi-axial stress states and six different strain rate conditions, to investigate the effect of the stress triaxiality and strain rate on fracture strain. Test data show that the measured true fracture strain tends to decrease with increasing stress triaxiality and strain rate. The test data are then quantified using the Johnson-Cook (J-C) fracture strain model incorporating combined effects of the stress triaxiality and strain rate. The determined J-C model can predict true fracture strain overall conservatively with the difference less than 20%. The conservatism in the strain-based acceptance criteria in ASME B&PV Code, Section III, Appendix FF is also discussed.

Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement (변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

An investigation of the strain rate effect on the delamination toughness of fiber-reinforced composites in the hydrostatic pressure condition (정수압 조건에서 변형률 변화가 섬유강화 복합재의 층간분리인성에 미치는 영향에 대한 연구)

  • Ha Sung Rok;Rhee Kyong Yop;Kim Hyeon Ju;Jung Dong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.99-103
    • /
    • 2005
  • It is generally accepted that fracture toughness of fiber-reinforced polymer composites is affected by strain rate in an atmospheric pressure condition. For a present study, the strain rate effect on the fracture toughness of fiber-reinforced laminated composites in the hydrostatic pressure condition was investigated. For this purpose, fracture tests have been conducted using graphite/epoxy laminated composites applying three steps of the strain rate at 270 MPa hydrostatic pressure condition. The strain rates applied were $0.05\%/sec,\;0.25\%/sec$, and $0.55\%/sec$. Fracture toughness was determined from the work factor approach as a function of applied strain rate. The result showed that fracture toughness decreased as the strain rate increased. Specifically, the fracture toughness decreased $12\%$ as the strain rate increased from $0.05\%/sec$ to $0.55\%/sec$.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Experimental Investigation on the Mechanial Behavior of Graphite/Epoxy Composites Under Hydrostatic Pressure (고압하에서의 적층복합재의 기계적 거동에 대한 실험적 고찰)

  • Rhee, K.Y.;Pae, K.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2431-2435
    • /
    • 1996
  • In order to determine the effects of hydrostatic pressure on the mechanical behavior of graphite fiber reinforced composites, the modulus, fracture stress(maximum stress), and fracture strain of graphite/epoxy composites have been determined as a function of pressure. Composite specimens used in this study were 90-deg unidirectional and had a 60% fiber volume fraction. Compressive tests under five different pressure levels were conducted. The result showed the modulus measured from as initial slope of stress-strain curve increased bilinearly with pressure with a break at 200 MPa. It was also found that fracture stress and fracture strain increased in a linear fashion with pressure.