• Title/Summary/Keyword: Fracture Performance

Search Result 657, Processing Time 0.026 seconds

Development of new finite elements for fatigue life prediction in structural components

  • Tarar, Wasim;Scott-Emuakpor, Onome;Herman Shen, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.659-676
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop new finite elements for uniaxial and bending fatigue life prediction. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite elements for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure for each element in structural components. The performance of the fatigue finite elements is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

An Experimental Study on Cushion Characteristics of pneumatic Cylinder for Vertically-Mounted. (공압 수직실린더의 쿠션특성에 관한 실험적 연구)

  • Kim, Dong-Su;Kim, Hyeong-Ui;Lee, Sang-Cheon
    • 연구논문집
    • /
    • s.28
    • /
    • pp.73-87
    • /
    • 1998
  • A pneumatic control system of compressed air as a working fluid has a variety of advantages such as low price, high respondence, non-explosion and good control performance and thus has many applications in the field of automobile, electronic and semiconductor industry. However, it has a difficulty in contolling a precise position due to quick response of system and compressibility of working fluid and. in particular, shock stress may occur due to an external load, resulting in fracture of a cylinder cap unless cushion device is equipped in the linear actuator. To avoid this, a cushion device should be installed for damping effect of the external load and the supply pressure as well as for decreasing shock stress and vibration caused by high speed rotation. Previous studies include dimensionless analyses and computer simulations of cushion capability and experiments of horizontally-mounted cylinder performances. A new attempt is experimentally made in this study using a vertically-mounted cylinder under an operation condition of 4, 5 and 6 (bar) as supply pressure and 40, 70 and 100 (kgf) as external load. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion characteristics was also revealed in the meter-in circuit.

  • PDF

Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Bae, M.K.;Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF

Optimum Design for Frame Bracket of Electrical Panels for Improved Fatigue Strength (함정용 배전반의 피로강도 향상을 위한 프레임 브래킷의 최적설계)

  • Kim, Myung-Hyun;Choi, Jae-Young;Kang, Sung-Won;Chung, Ji-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.206-212
    • /
    • 2006
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The electrical panels may be exposed to vibration and fatigue loadings from internal and external sources as well as wave loadings which result into a crack and fracture due to the decrease of fatigue strength. It is also well known that welded joints including brackets within steel structures .such as vessels and bridges are vulnerable against such repeated loadings. This study introduces a preliminary result of the optimized shape of frame bracket consisting of electrical panels in navel vessels against fatigue loading and their fatigue life at brackets of electrical panels by means of hot spot stress and structural stress methods.

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.

An experimental study on the relationship between SFRC and HSC at long-term response. (고강도 콘크리트와 강섬유 보강 콘크리트의 장기거동 특성에 관한 상관관계 연구)

  • Seo Jong-Myeong;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.317-320
    • /
    • 2005
  • In recent years, according to the development of construction technique, the constructions of longer span bridges, taller buildings, deeper offshore structures, and other megastructures are calling for construction materials with increasingly improve properties. So, the demand for high-strength concrete(HSC) have been increased and many new structures have been built using HSC with the compressive strength about 100MPa. However, it is well-known that as the strength of concrete increases, concrete becomes more brittle. Recent studies, however, shown that the brittleness of HSC can be improved by adding some fibers to the concrete. Especially steel fiber reinforced concrete(SFRC) can be used in this case. Many research works have shown that SFRC results in better crack and deflection control, higher shear strength, improved fatigue performance, increased impact strength, reformed flexural strength, advanced fracture toughness and enhanced postcracking resistance. So, this is a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this study, the test results of twenty-six high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of 1 $\%$ by volume were presented. And the results are analyzed by using of the factors of time, mix properties, humidity/temperature, and loading conditions.

  • PDF

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF