• 제목/요약/키워드: Fracture Morphology

검색결과 169건 처리시간 0.024초

자가치료용 마이크로캡슐이 구조재의 기계적 특성에 미치는 영향 (Effect of autonomic microcapsules on mechanical properties of structural materials)

  • 소진호;윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.508-511
    • /
    • 2004
  • This study focused on the effect of autonomic microcapsules on the mechanical properties of structural material. Several types of microcapsules with healing agents were manufactured by varying agitation speed of high speed stirrer. The size distribution of microcapsules was measured by a particle size analzer. The epoxy specimens embedded with microcapsules were manufactured and the degree of cure of such epoxy specimen was measured by a differential scanning calorimetry. The tensile modulus and tensile strength in epoxy specimens embedded with microcapsules were evaluated in order to investigate the effects of microcapsules on mechanical properties of structural materials. The configuration of microcapsules and morphology of fracture surfaces for the epoxy specimen were examined by an optical microcope and a scanning electron microscope. According to the results, tensile strength of the epoxy specimen embedded with microcapsules was indicated a little reduction, but tensile modulus was not much affected on microcapsules.

  • PDF

Al 7075-T651의 부식피로균열 성장 거동에 관한 연구(II) (A Study on Corrosion Fatigue Crack Growth Behavior in Al 7075-T651(II))

  • 한지원;우흥식
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.3-10
    • /
    • 1999
  • Fatigue crack growth rates in commercial plate of high strength Al 7075-T651 were investigated for the T-L direction in air, water and sea water. In this paper the effect of cyclic load wave-form(trapezoid and triangle) on fatigue crack growth rates in air, water and sea water environments were investigated using standard LEFM testing procedures. It was founded that the fatigue crack growth behaviors were not affected by cyclic load wave-forms. In region II (stable crack growth region), the fatigue crack growth behaviors were insensitive to cyclic load wave-forms and were sensitive to environment i.e. fatigue crack growth behaviors were higher in sea water than in air for all cyclic load wave-form. The result of fractographical morphology in air, water and sea water by SEM showed obvious dimple rupture and typical striation in air, but transgranular fracture surface in water and sea water. The values m are not affected by corrosion environments but C are different values.

  • PDF

Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I) (A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I))

  • 김봉철;한지원;우흥식
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

Influence of Methylcellulose on Properties of Wheat Gliadin Film Cast from Aqueous Ethanol

  • Song, Yihu;Li, Lingfang;Zheng, Qiang
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.910-916
    • /
    • 2009
  • Present work was focused on the influence of methylcellulose (MC) on steady rheology of wheat gliadin solution and the properties of glycerol plasticized gliadin films. The presence of MC below 0.99 wt% improved viscosity and flow activation energy of the 10 wt% gliadin solution significantly. In the casting films containing 0.2 g glycerol/g dry protein, the MC component aggregated in the gliadin matrix. The blend films containing less than 7.7 wt% MC exhibited higher Young's modulus (E) and tensile strength (${\sigma}_b$) and lower elongation at break (${\epsilon}_b$) in comparison with the pure gliadin film, which was related to the intermolecular interaction between MC and gliadins, the brittle fracture of the aggregated MC component, and the increase in glass transition temperature ($T_g$) of the gliadin phase. Increasing MC content led to a slight increase in water vapor permeability (WVP) without significant influence on the moisture absorption (MA).

Kaolin 충전제(充塡劑) 표면처리(表面處理)에 관(關)한 연구(硏究)(제(弟) 2 보(報)) -주사전자현미경(走査電子顯微鏡)에 의(依)한 morphology- (Studies on the Surface Treatment of Kaolin Filler(Part 2) -Morphological Studies by SEM-)

  • 권동용;홍성일;김선호;이용무;허동섭
    • Elastomers and Composites
    • /
    • 제18권4호
    • /
    • pp.135-139
    • /
    • 1983
  • Scanning electron microscopy studies were conducted to examine the surface treatment effects of treating agents the proposed in the previous studies on various vulcanizates. Fracture surfaces of the vulcanizates compounded with kaolin treated with sodium polyphosphate of poly(maleic anhydride) presented favorable results as expected from the results of the previous studies. In other words, treating agents such as sodium polyphosphate and poly(maleic anhydride) show considerable reinforcing effects on the vulcanizates.

  • PDF

$ZTA-Al_2O_3$ Whisker계 복합재료의 미세구조 변화에 따른 열적, 기계적 특성에 관한 연구 (Thermo-mechanical Properties and Microstructures of $ZTA-Al_2O_3$ Whisker Composites)

  • 이문환;최성철;이응상
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.457-468
    • /
    • 1993
  • In oxide matrix-SiC(W) composites, instability and glassy phase formation due to oxidation at the high temperature and the diffusion of Si, respectively, cause brittle fracture and low reliability for ceramic materials. The mode of contribution in each mechanisms induced by matrix-whisker debonding, varies with the morphology of matrix-whisker interfaces. This work has described the dispersion behaviours and stabilization mechanisms in slip systems, and multiple toughening mechanisms by dint of two second phase different from each other when spherical ZrO2 and chemically stable Al2O3(W) is respectively added in Al2O3 matrix. To obtain complexshaped components, slip casted bodies were sintered at 1$600^{\circ}C$, 2hrs up to 98~99% R.D.. Multiple toughening mechanisms in comparison with theories reported until now will be discussed as a result of the phase analysis of ZrO2 by athermal behaviours and microstructural characterizations as well as measured mechanical properties.

  • PDF

Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.102-106
    • /
    • 2010
  • In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor ($K_{IC}$), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.

반응소결법에 의한 SiC/SiC 복합재료의 제조 (Fabrication of SiC/SiC Composites by Reaction Sintering Process)

  • 이상필;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.27-31
    • /
    • 2001
  • Hi-Nicalon SiC fiber reinforced SiC composites (SiC/SiC) have been fabricated by the reaction sintering process. Braided Hi-Nicalon SiC fiber with double interphases of BN and SiC was used in this composite system. The microstructures and the mechanical properties of reaction sintered SiC/SiC composites were investigated through means of electron microscopies (SEM, TEM, EDS) and bending tests. The matrix morphology of reaction sintered SiC/SiC composites was composed of the SiC phases that the composition of the silicon and the carbon is different. The TEM analysis showed that the residual silicon and the unreacted carbon were finely distributed in the matrix region of reaction sintered SiC/SiC composites. Reaction sintered SiC/SiC composites also represented proper flexural strength and fracture energy, accompanying the noncatastrophic failure behavior.

  • PDF

고강도 Fe계 합금의 고온 변형 특성 (High Temperature Deformation Behavior of Fe-base High Strength Alloys)

  • 권운현;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

Sic/A1 복합재료의 방전가공 특성에 관한 연구 (A Study on the Characterisitcs of Electircal Discharge Machining)

  • 우정윤;왕덕현;김원일;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.3-7
    • /
    • 1996
  • Metal Matrix Composite(MMC) material of 30% SiC particulate based on A1 matrix was machined by drilling and Electrical Discharge Machining (EDM) processes. When drilling process was executed, surface fracture due to brittle property near the bottom was found. It was also found the possiblity of difficult shape of EDM process for MMC material, but few the research about basic EDM characteristics. Material Removal Rate(MRR) was examined for different conditions and the surface morphology was evaluated by roughness values and Scanning Electron Microscopy(SEM) research. The higher the current is, the more MRR was obtained but the higher MRR was showed around 0.45 duty factor. The average roughness of EDMed surface was slightly changed with increased pulse current and increases with duty factor. The SEM photographs of EDMed surface showed recast region after melting.

  • PDF