• Title/Summary/Keyword: Fractional differential equations

Search Result 113, Processing Time 0.021 seconds

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.

UNIQUENESS OF SOLUTION FOR IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

  • Singhal, Sandeep;Uduman, Pattani Samsudeen Sehik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.171-177
    • /
    • 2018
  • In this research paper considering a differential equation with impulsive effect and dependent delay and applied Banach fixed point theorem using the impulsive condition to the impulsive fractional functional differential equation of an order ${\alpha}{\in}(1,2)$ to get an uniqueness solution. At last, theorem is verified by using a numerical example to illustrate the uniqueness solution.

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.

EXISTENCE AND REGULARITY FOR SEMILINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.631-637
    • /
    • 2014
  • In this paper, we construct some results on the existence and regularity for solutions of neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the existence and regularity for solutions of the neutral system by using fractional power of operators and the local Lipschtiz continuity of nonlinear term without using many of the strong restrictions considering in the previous literature.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

SOLVABILITY OF SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER VIA MEASURE OF NONCOMPACTNESS

  • Dadsetadi, Somayyeh;Nouri, Kazem;Torkzadeh, Leila
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this article, we investigate the solvability of nonlinear fractional integro-differential equations of the Hammerstein type. The results are obtained using the technique of measure of noncompactness and the Darbo theorem in the real Banach space of continuous and bounded functions in the interval [0, a]. At the end, an example is presented to illustrate the effectiveness of the obtained results.

EXISTENCE AND UNIQUENESS RESULTS FOR CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;ABDO, MOHAMMED S.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • This paper successfully applies the modified Adomian decomposition method to find the approximate solutions of the Caputo fractional integro-differential equations. The reliability of the method and reduction in the size of the computational work give this method a wider applicability. Also, the behavior of the solution can be formally determined by analytical approximation. Moreover, we proved the existence and uniqueness results and convergence of the solution. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.

Fractional order optimal control for biological model

  • Mohamed Amine Khadimallah;Shabbir Ahmad;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • In this research, we considered fractional order optimal control models for cancer, HIV treatment and glucose.These models are based on fractional order differential equations that describe the dynamics underlying the disease.It is formulated in term of left and right Caputo fractional derivative. Pontryagin's Maximum Principle is used as a necessary condition to find the optimal curve for the respective controls over fixed time period. The formulated problems are numerically solved using forward backward sweep method with generalized Euler scheme.