• 제목/요약/키워드: Fractional differential equations

검색결과 113건 처리시간 0.018초

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

SOLVABILITY OF MULTI-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

  • Liu, Yuji;Liu, Xingyuan
    • 충청수학회지
    • /
    • 제25권3호
    • /
    • pp.425-443
    • /
    • 2012
  • Sufficient conditions for the existence of at least one solution of a class of multi-point boundary value problems of the fractional differential equations at resonance are established. The main theorem generalizes and improves those ones in [Liu, B., Solvability of multi-point boundary value problems at resonance(II), Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An example is presented to illustrate the main results.

EXISTENCE OF POSITIVE SOLUTIONS FOR EIGENVALUE PROBLEMS OF SINGULAR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Lee, Yong-Hoon;Lee, Jinsil
    • East Asian mathematical journal
    • /
    • 제33권3호
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, we consider the existence of positive solutions for eigenvalue problems of nonlinear fractional differential equations with singular weights. We give various conditions on f and apply Krasnoselskii's Cone Fixed Point Theorem. As a result, we obtain several existence and nonexistence results corresponding to ${\lambda}$ in certain intervals.

GLOBAL EXISTENCE OF SOLUTIONS FOR A SYSTEM OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

  • LIU, YUJI;WONG, PATRICIA J.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.327-342
    • /
    • 2015
  • By employing a fixed point theorem in a weighted Banach space, we establish the existence of a solution for a system of impulsive singular fractional differential equations. Some examples are presented to illustrate the efficiency of the results obtained.

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

NUMERICAL METHOD FOR A SYSTEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-LOCAL BOUNDARY CONDITIONS

  • S. Joe Christin Mary;Ayyadurai Tamilselvan
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.281-298
    • /
    • 2023
  • A class of systems of Caputo fractional differential equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a uniform mesh is proposed. Supremum norm is used to derive an error estimate which is of order κ − 1, 1 < κ < 2. Numerical examples are given which validate our theoretical results.

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

SYSTEMATIC APPROXIMATION OF THREE DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권3호
    • /
    • pp.253-266
    • /
    • 2019
  • In this article, a systematic solution based on the sequence of expansion method is planned to solve the time-fractional diffusion equation, time-fractional telegraphic equation and time-fractional wave equation in three dimensions using a current and valid approximate method, namely the ADM, VIM, and the NIM subject to the estimate initial condition. By using these three methods it is likely to find the exact solutions or a nearby approximate solution of fractional partial differential equations. The exactness, efficiency, and convergence of the method are demonstrated through the three numerical examples.