• 제목/요약/키워드: Fractional Black-Scholes equation

검색결과 3건 처리시간 0.016초

BARRIER OPTION PRICING UNDER THE VASICEK MODEL OF THE SHORT RATE

  • Sun, Yu-dong;Shi, Yi-min;Gu, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1501-1509
    • /
    • 2011
  • In this study, assume that the stock price obeys the stochastic differential equation driven by mixed fractional Brownian motion, and the short rate follows the Vasicek model. Then, the Black-Scholes partial differential equation is held by using fractional Ito formula. Finally, the pricing formulae of the barrier option are obtained by partial differential equation theory. The results of Black-Scholes model are generalized.

AN EFFICIENT METHOD FOR SOLVING TWO-ASSET TIME FRACTIONAL BLACK-SCHOLES OPTION PRICING MODEL

  • DELPASAND, R.;HOSSEINI, M.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권2호
    • /
    • pp.121-137
    • /
    • 2022
  • In this paper, we investigate an efficient hybrid method for solving two-asset time fractional Black-Scholes partial differential equations. The proposed method is based on the Crank-Nicolson the radial basis functions methods. We show that, this method is convergent and we obtain good approximations for solution of our problems. The numerical results show high accuracy of the proposed method without needing high computational cost.

GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

  • Choe, Hi Jun;Chu, Jeong Ho;Kim, Jongeun
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1241-1261
    • /
    • 2018
  • We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.