• Title/Summary/Keyword: Fower-Nordheim region

Search Result 2, Processing Time 0.018 seconds

정공 수송 재료인 TPD의 전기 전도 특성

  • Kim, Won-Jong;Choe, Hyeon-Min;Lee, Jong-Yong;Choe, Gwang-Jin;Hong, Jin-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.170-170
    • /
    • 2009
  • From the analysis of current density-luminance-voltage characteristics of the double layered device in ITO/N,N'-diphenyl-N-N'bis(3-methylphenyl)-1,1'biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/Al, we divided the conductive mechanism by four region according to applied voltage. We have obtained a coefficient of ${\beta}_{ST}$ in schottky region (I) is $4.14{\times}10^{-24}$ at the electric field of $3.2{\times}10^5$ V/cm, a slope in negative resistance region (II) appears negative properties decreasing the current density J for proportional in -1.58 square at a electric field of $7.3{\times}10^5$ V/cm. A coefficient of ${\beta}_{PF}$ in Poole-Frenkel region (III) is $8.28{\times}10^{-24}$ at the electric field of $8.4{\times}10^5$ V/cm, it was confirm어 that ${\beta}_{PF}$ is agrees with a value that relates with ${\beta}_{ST}$ such as ${\beta}_{PF}=2{\beta}_{ST}$ as the ${\beta}_{PF}$ and 2 ${\beta}_{ST}$ satisfied a theoretical prediction. And it was obtained a potential barrier of ${\Phi}_{FN}$ in Fower-Nordheim region(IV) is 0.3 eV at the electric field of $11.2{\times}10^5$ V/cm.

  • PDF

Influence of the Optical Characteristics and Conductive Mechanism depending on the Deposition Condition of BCP (BCP의 증착 조건에 따른 광학적 특성 및 전도 기구에 미치는 영향)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.980-986
    • /
    • 2009
  • In a triple-layered structure of ITO/N,N'-diph enyl-N,N'bis(3-methylphenyl)-1,1' - biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Al device, we have studied the electrical and optical characteristics of organic light-emitting diodes(OLEDs) depending on the deposition condition of BCP layer. Several different sizes of holes on boat and several different deposition rates were employed in evaporating the organic materials. And then, electrical properties of the organic light-emitting diodes were measured and the performance of the devices was analyzed. It was found that the hole-size of crucible boat and the evaporation rate affect on the surface roughness of BCP layer as well as the performance of the device. When the hole-size of crucible boat and the deposition rate of BCP are 1.2 mm and $1.0\;{\AA}/s$, respectively, average surface roughness of BCP layer is lower and the efficiency of the device is higher than the ones made with other conditions. From the analysis of current density-luminance-voltage characteristics of a triple layered device, we divided the conductive mechanism by four region according to applied voltage. So we have obtained a coefficient of ${\beta}_{ST}$ in schottky region is $3.85{\times}10^{-24}$, a coefficient of ${\beta}_{PF}$ in Poole-Frenkel region is $7.35{\times}10^{-24}$, and a potential barrier of ${\phi}_{FN}$ in Fower-Nordheim region is 0.39 eV.