• Title/Summary/Keyword: Fourier-Distance Relation

Search Result 2, Processing Time 0.016 seconds

Aperture Correction using Distance-Dependent Backprojection for SPECT Images (거리 의존적 역투사를 이용한 SPECT 영상 구경보정)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.434-442
    • /
    • 2008
  • The parallel beam SPECT acquires projection data by using parallel hole collimators in conjunction with photon detectors. Those projection data of the parallel beam SPECT are, however, contaminated by the distance dependent blurring because of the inaccuracy of the point response function of the collimator that is used to define the range of directions where photons can be detected. Thus an efficient aperture correction is required. In this paper we propose a distance dependent backprojection method to overcome the time limitation of iterative aperture correction methods and the performance limitation of Fourier-Distance Relation based method. The proposed method achieves aperture correction and fast image reconstruction by replacing the distance independent backprojection of the direct image reconstruction with the distance dependent one. We conducted several simulations to compare the performance of the proposed method with that of the conventional Fourier-Distance Relation based method. The simulation result shows that the proposed method outperforms the Fourier-Distance Relation based method in spatial resolution and robustness against noise.

  • PDF

TITIUS-BODE'S Relation and 55 Cancri

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.239-244
    • /
    • 2008
  • Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. These may be tackled by answering a question whether Titius-Bode's relation is valid universally in exo-planetary systems. We have examined whether Titius Bode's relation is also applicable to exo-planetary systems by statistically studying the distribution of the ratio of rotational periods of two planets in an exo-planetary system, 55 Cnc, by comparing it with that derived from Titius-Bode's relation. We find that the distribution of the ratio of rotational periods of randomly chosen two planets in the 55 Cnc system is apparently inconsistent with that derived from Titius-Bode's relation. The probability that two data sets are drawn from the same distribution function is 50%. We also find that the Fourier power spectra show that the distribution of the semi-major axis of planets in the 55 Cnc system seems to be stretched. We conclude by pointing out that large numbers of planets should be examined to more convincingly explain the distribution of the distance of planetary formation regions.