• Title/Summary/Keyword: Fourier transform on torus

Search Result 2, Processing Time 0.023 seconds

BOEHMIANS ON THE TORUS

  • Nemzer, Dennis
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.831-839
    • /
    • 2006
  • By relaxing the requirements for a sequence of functions to be a delta sequence, a space of Boehmians on the torus ${\beta}(T^d)$ is constructed and studied. The space ${\beta}(T^d)$ contains the space of distributions as well as the space of hyperfunctions on the torus. The Fourier transform is a continuous mapping from ${\beta}(T^d)$ onto a subspace of Schwartz distributions. The range of the Fourier transform is characterized. A necessary and sufficient condition for a sequence of Boehmians to converge is that the corresponding sequence of Fourier transforms converges in $D'({\mathbb{R}}^d)$.

A NOTE ON LATTICE DISTRIBUTIONS ON THE TORUS

  • Park, Chong-Jin;Lee, Kyu-Seok
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.21-24
    • /
    • 2003
  • In the recent papers by Harris and Park (1994) and by Hui and Park (2000), a family of lattice distributions derived from a sum of independent identically distributed random variables is examined. In this paper we generalize a result of Hui and Park (2000) on lattice distributions on the torus using the Poisson summation formula.