• Title/Summary/Keyword: Fourier spectrum

Search Result 478, Processing Time 0.026 seconds

Robust Watermarking in Medical Images Using by Polar Transformation (의료영상에서 Polar 변환을 적용한 강인한 워터마킹 기법)

  • 남기철;박무훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.379-385
    • /
    • 2004
  • Medical images are being managed more by PACS in general medical institutions. It is important to protect patients from being invaded their privacy related to the images. It is also necessary to confirm the ownership, the right of property of the medical images and notice whether the data are modified. In this paper, we propose a robust watermarking against RST attacks in medical images on the PACS. The proposed scheme modifies and improves Log-Polar Mapping and Fourier Mellin Transform in order to realize and recover serious image degradation and watermark data loss caused by the conversion between cartesian coordinate and log-polar coordinate. We used the radius and theta Look Up Table to solve the realization of the Fourier Mellin Transform, and inserted a watermark into 2D-DFT magnitudes using Spread Spectrum. Experimental results shows that this method are robust to rotation attack.

Quantitative analysis by derivative spectrophotometry (ll) Derivative spectrophotometry and methods for the reduction of high frequency noises

  • Park, Man-Ki;Cho, Jung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • One of the problems of derivatie spectrophotometry, the decrease of signal-to-noise ratio by derivative operations, was solved by three concepts of digital filtering, ensemble averaging, least squares polynomial smoothing and Fourier smoothing. The suthors made several compouter programs written in APPLE SOFT BASIC language for the actual applications of the concepts of these digital filters on UV spectrophotometer system. As a result, ensemble averaging could not be used as a routine operation for the spectrophotometer used. The maximum S/N ratio enhancement factors achieved by least squares polynomial smoothing were 6.17 and 7.47 for the spectra of Gaussian and Lorentzian distribution models, and by Fourier smoothing 16.42 and 11.78 for the spectra of two models, respectively.

  • PDF

APPLICATION OF FFT-BASED ANALYSIS TO CONTACT CONDITION PREDICTION FOR TRIBOLOGICAL SURFACE DESIGN

  • Sung, I.H.;Lee, H.S.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.255-256
    • /
    • 2002
  • In this paper, the frictional behavior according to the contact geometry was investigated using a micro-tribotester built inside a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). FFT (Fast Fourier Transform) analysis for friction was conducted as a method to interpret the contact condition. From the experimental results, it could be concluded that the relative dimensions and distribution of contact asperities on the surface could be predicted by the power spectrum and main frequency in the FFT analysis of the friction signal.

  • PDF

Fault Detection System Development for a Spin Coater Through Vibration Assessment (스핀코터의 진동 평가를 통한 이상 검출 시스템 개발)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.47-54
    • /
    • 2009
  • Spin coaters are the essential instruments in micro-fabrication processes, which apply uniform thin films to flat substrates. In this research, a spin coater diagnosis system is developed to detect the abnormal operation of TFT-LCD process in real time. To facilitate the real-time data acquisition and analysis, the circular-buffered continuous data transfer and the short-time Fourier transform are applied to the fault diagnosis system. To determine whether the system condition is normal or not, a steady-state detection algorithm and a frequency spectrum comparison algorithm using confidence interval are newly devised. Since abnormal condition of a spin coater is rarely encountered, algorithm is tested on a CD-ROM drive and the developed program is verified by a function generator. Actual threshold values for the fault detection are tuned in a spin coater in process.

Dynamic Direct and Indirect Buckling Characteristics of Arch by Running Response Spectrum (연속 응답 스펙트럼 분석에 의한 아치의 동적 직접 및 간접 좌굴 특성)

  • Yun, Tae-Young;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.161-168
    • /
    • 2004
  • The dynamic instability of snapping phenomena has been studied by many researchers. Few papers deal with dynamic buckling under loads with periodic characteristics, and the behavior under periodic excitations is expected to be different from behavior under STEP excitations. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidally shaped arch structures are subjected to sinusoidally distributed excitations with pin-ends. The mechanisms of dynamic indirect snapping of shallow arches are especially investigated under not only STEP function excitations but also under sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equation of motion, and examined by Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Analysis of sampling noise effect of Interferometer on FTIR Spectrometer (FTIR 분광용 간섭계의 샘플링 잡음 영향 분석)

  • Bae, Hyo-Wook;Park, Do-Hyun;Ra, Sung-Woong;Choi, Seung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.10-17
    • /
    • 2007
  • FTIR(Fourier Transform Infrared) spectrometry is a useful method to obtain infrared spectra of materials in gas phase by registering the interferogram of a target material using an interferometer, and then performing a Fourier transform on the interferogram to obtain the spectrum. In this paper, sampling noise effect on signal processing of the rapid scan interferometer was studied with relation to sampling the interferogram points at the improper location and empirically verified.

A EMG Signal Analysis by the Short Time Fourier Analysis (시간 푸리에 해석에 의한 근전신호 해석)

  • Shin, Seung-Hyun;Lim, Hyun-Su;Huh, Woong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.61-65
    • /
    • 1989
  • In this paper, a method of the measument the degree of the musule fatigue by Short Time Fourier Analysis of the EMG signals from human biceps in the action state is proposed. For this purpose, fatigue state and recovery state of 10 persons EMG signals are sampled. And then spectrum centroids are analyzed with respect to the change of sample time window. As result of 10 persons experiment, we know that person A is most good recovery stale.

  • PDF

Talbot Interferometry for Measuring the Focal Length of a Lens without Moiré Fringes

  • Lee, Sukmock
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.165-168
    • /
    • 2015
  • A simple method to determine the focal length of a lens using the Talbot image is presented. This method uses only one grating, requiring neither Moir$\acute{e}$ fringe analysis nor the angle between the gratings. The original Fourier transform was used to access the spectrum beyond the limitation set of the usual fast Fourier transform to determine the (de)magnification accurately enough to be used for the focal length. A set of Talbot images simulated numerically with the Fresnel diffraction integral was used to demonstrate the method. For focal lengths between 5550 mm and 5650 mm, the mean difference between the focal lengths determined from the Talbot images and the true values was 3.3 mm with the standard deviation of the difference being 3.8 mm. The true focal lengths can be recovered with an accuracy of 0.06%.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.